

Controversy session:
PD-L1 is a good enough for now predictive biomarker for anti-PD-1 therapy in oesophagogastric cancer

Yelena Y. Janjigian, MD

Twitter: @yjanjigianMD

Memorial Sloan Kettering Cancer Center, United States of America

Disclosures

Consulting fees and travel funding from

- Bristol Myers Squibb
- Merck Serono, RGENIX
- Eli Lilly
- Daiichi Sankyo
- Pfizer, Bayer
- Imugene
- Merck
- Zymeworks Inc.
- Seagen
- Basilea Pharmaceutica
- AstraZeneca
- Michael J. Hennessy Associates
- Paradigm Medical Communications

Funds for research support from

- NCI
- Department of Defense
- Cycle For Survival
- Fred's team
- RGENIX
- Bayer
- Genentech/Roche
- Bristol Myers Squibb
- Eli Lilly
- Merck

Argument <u>for</u> biomarker selection in gastric cancer

Biomarker	Prevalence in metastatic gastric cancer	Therapeutic agent(s)
ERBB2/HER2	20%	Dual ani-HER2 and Anti-PD-1
MSI-high	5%	Anti-PD-1
EBV-positive	3%	Anti-PD-1
PD-L1 CPS	CPS <u>></u> 1 = 80%; CPS <u>></u> 5 = 60%	Anti-PD-1
FGFR2b overexpression	30%	bemarituzumab
CLDN18.2	35%	zolbetuximab
Tumor sequencing	NTRACK, EGFR, MET, RAS amp	TKIs and EGFR mabs
Plasma DNA	Monitoring for response and resistance	Broad application

PD-L1: Multiple Drugs With Multiple Assays

PD-L1 expression in gastric cancer is determined by combined positive score (CPS)

A specimen is considered to have positive PD-L1 expression if CPS ≥1

Assay	Agent
PD-L1 IHC 22C3 PharmDX ^[1,2]	Pembrolizumab
PD-L1 IHC 28-8 PharmDX ^[3,4]	Nivolumab
PD-L1 (SP142) assay ^[5,6]	Atezolizumab
PD-L1 (SP263) assay ^[7,8]	Durvalumab Pembrolizumab Nivolumab

PD-L1 testing -E1L3N Cellsignaling at MSKCC

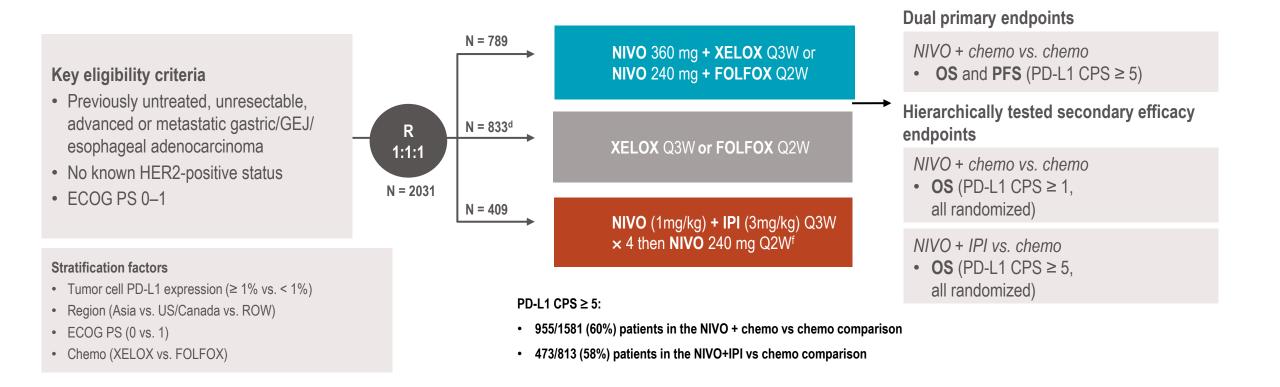
^a 22C3 pharmDx kit, Agilent Technologies, Carpinteria, CA.

Immunotherapy in Gastric Adenocarcinoma

- Nivolumab with chemotherapy approved in the United States for 1st-line treatment irrespective of PD-L1 status¹
- Pembrolizumab, trastuzumab, and chemotherapy approved in the United States for HER2-positive disease²
- Sintilimab approved in China for 1st-line treatment irrespective of PD-L1 status³
- Nivolumab approved in Asia irrespective of PD-L1 status for ≥ 3rd-line treament⁴
- Pembrolizumab approval for ≥ 3rd-line treatment in the United States withdrawn July 2021⁵
- Pembrolizumab approved in TMB ≥10 mut/Mb (United States) or MSI-H tumors (United States and Japan)^{2,6}

^{1.} OPDIVO (nivolumab) [package insert]. Princeton, NJ: Bristol Myers Squibb; 2021.

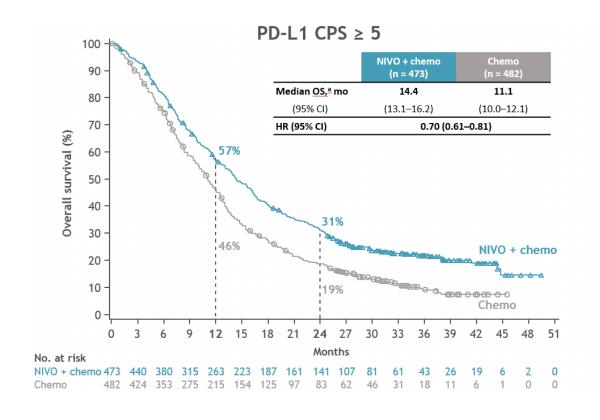
^{2.} KEYTRUDA (pembrolizumab) [package insert]. Whitehouse Station, NJ: Merck & Co., Inc.; 2021.

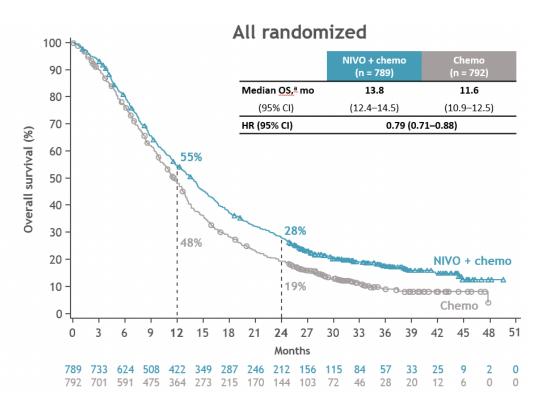

^{3.} TYVYT (Sintilimab). Eli Lilly; Jun 2022

^{4.} Högner A, Thuss-Patience P. Pharmaceuticals (Basel). 2021;14:151.

^{5.} Merck (press release, July 1, 2021). Accessed July 20, 2021.

^{6.} Merck (press release, August 24, 2020). Accessed July 20, 2021.


CheckMate 649 Study Design



At data cutoff (May 27, 2021) the minimum follow-up was 24.0 months in the NIVO + chemo arm and 35.7 months
in the NIVO + IPI arm

CheckMate 649 Established a New Standard of Care:

Nivo + Chemo improved overall survival; FDA approved April 2021¹

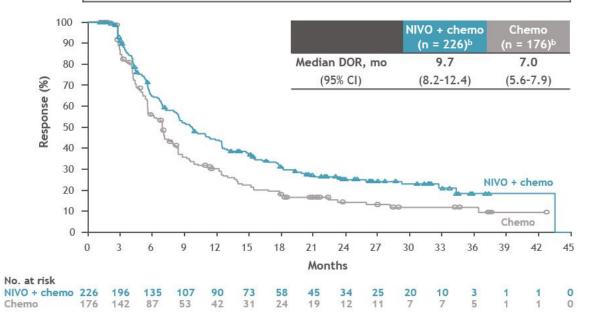
Clinically meaningful improvement in OS with NIVO + chemo vs chemo was maintained with longer follow-up

- PD-L1 CPS ≥ 5: 30% reduction in the risk of death and 12% improvement in 24-month OS rate
- All randomized: 21% reduction in the risk of death and 9% improvement in 24-month OS rate
- Directionally improved HRs relative to the 12-month follow-up (PD-L1 CPS ≥ 5, 0.71 [98.4% CI, 0.59-0.86]; all randomized, 0.80 [99.3% CI, 0.68-0.94])¹

Minimum follow-up, 24.0 months. ¹Janjigian YY, et al. *Lancet* 2021;398:27-40.

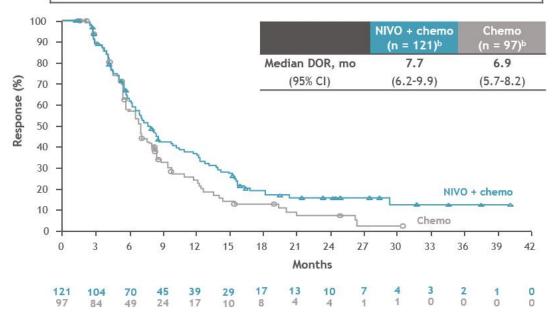
Efficacy outcomes by PD-L1 CPS with nivolumab plus chemotherapy versus chemotherapy.

Population	Nivolumab plus chemotherapy	Chemotherapy	,	Unstratified HR for death (95% CI)
Overall (n = 1,581)	13.8	11.6		0.78 (0.70, 0.87)
PD-L1 CPS <1 (n = 265)	13.1	12.5	-	0.95 (0.73, 1.24)
PD-L1 CPS ≥1 (n = 1,297)	13.8	11.3		0.74 (0.66, 0.84)
PD-L1 CPS <5 (n = 607)	12.4	12.3		0.94 (0.79, 1.11)
PD-L1 CPS ≥5 (n = 955)	14.4	11.1		0.69 (0.60, 0.79)
PD-L1 CPS <10 (n = 795)	12.4	12.5		0.91 (0.78, 1.06)
PD-L1 CPS ≥10 (n = 767)	15.0	10.9	-	0.66 (0.56, 0.77)

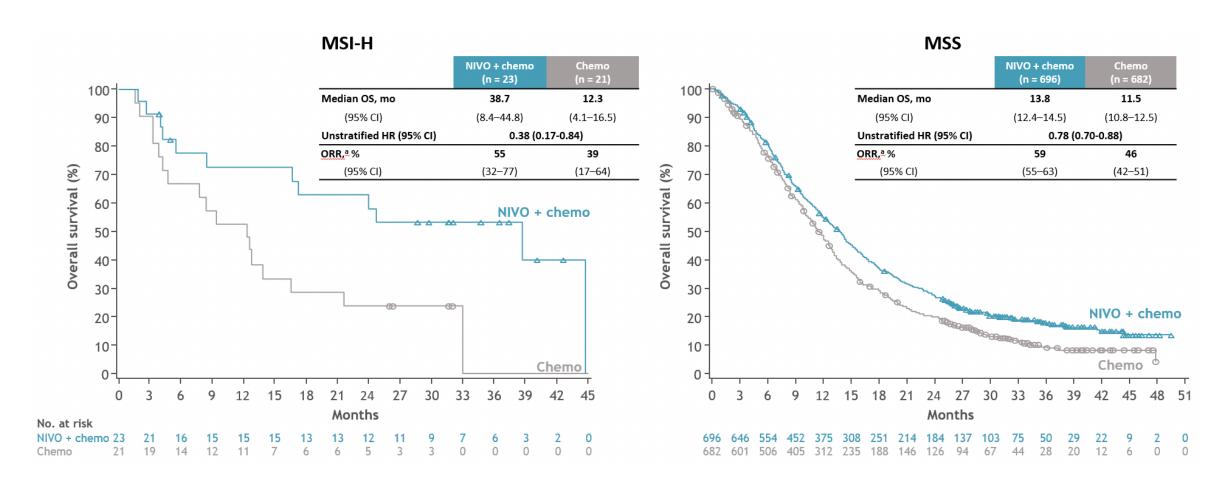

b Objective response rate (%)

Population	Nivolumab plus chemotherapy	Chemotherapy	Unwei	ighted ORR difference (%) (95% CI)
Overall (n = 1,210)	58	46		12 (6, 18)
PD-L1 CPS <1 (n = 179)	51	41	-	10 (-5, 24)
PD-L1 CPS ≥1 (n = 1,017)	59	46	-	13 (7, 19)
PD-L1 CPS <5 (n = 428)	55	46	-	9 (–1, 18)
PD-L1 CPS ≥5 (n = 768)	60	45	-	15 (8, 22)
PD-L1 CPS <10 (n = 579)	58	47		10 (2, 18)
PD-L1 CPS ≥10 (n = 617)	59	44		15 (7, 22)
		40	30 20 10 (0 -10 Chemo better

Response and duration of response


PD-L1 CPS ≥ 5¹

Response per BICR	NIVO + chemo (n = 378) ^a	Chemo (n = 390)ª
ORR, % (95% CI)	60 (55-65)	45 (40-50)
CR	13	7
PR	47	38
SD	28	34
PD	7	11



PD-L1 CPS < 5

Response per BICR	NIVO + chemo (n = 219)ª	Chemo (n = 209)ª
ORR, % (95% CI)	55 (48-62)	46 (40-53)
CR	7	4
PR	48	42
SD	30	32
PD	7	10

Efficacy by MSI Status: NIVO + Chemo vs Chemo

Longer median OS and higher ORR were observed in all randomized patients with MSI-H and MSS tumors with NIVO + chemo vs chemo

- The magnitude of benefit was greater in patients with MSI-H tumors
- Patients with MSS tumors had results similar to all randomized population

Treatment-related adverse events

All treated, ^a n (%)	NIVO + chemo (n = 782)		Chemo (n = 767)	
	Any grade	Grade 3/4	Any grade	Grade 3/4
Any TRAEs ^b	739 (95)	471 (60)	682 (89)	344 (45)
Serious TRAEs ^b	175 (22)	133 (17)	94 (12)	77 (10)
TRAEs leading to discontinuation ^{b,c}	300 (38)	141 (18)	188 (25)	70 (9)
Treatment-related deaths ^d	16 (2) ^e		4 (<	1) ^f

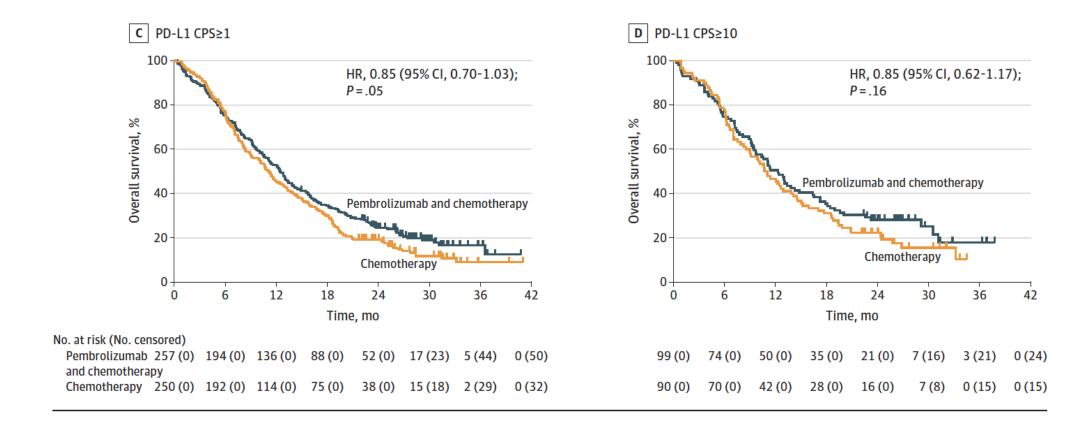
- No new safety signals were identified with NIVO + chemo
- The most common grade 3/4 TRAEs included:
 - NIVO + chemo: neutropenia (15%), decreased neutrophil count (11%), anemia (6%)
 - Chemo: neutropenia (13%), decreased neutrophil count (9%), diarrhea (3%)

^aPatients who received ≥ 1 dose of study drug; ^bAssessed in all treated patients during treatment and for up to 30 days after the last dose of study treatment; ^cTRAEs leading to discontinuation of any drug in the regimen; ^dTreatment-related deaths were reported regardless of timeframe; ^eIncluded 4 events of pneumonitis, 2 events of febrile neutropenia or neutropenia fever, and 1 event each of acute cerebral infarction, disseminated intravascular coagulation, GI bleeding, GI toxicity, infection, intestinal mucositis, mesenteric thrombosis, pneumonia, septic shock, and stroke; ^fIncluded 1 event each of asthenia and severe hyporexia, diarrhea, pneumonitis, and pulmonary thromboembolism.

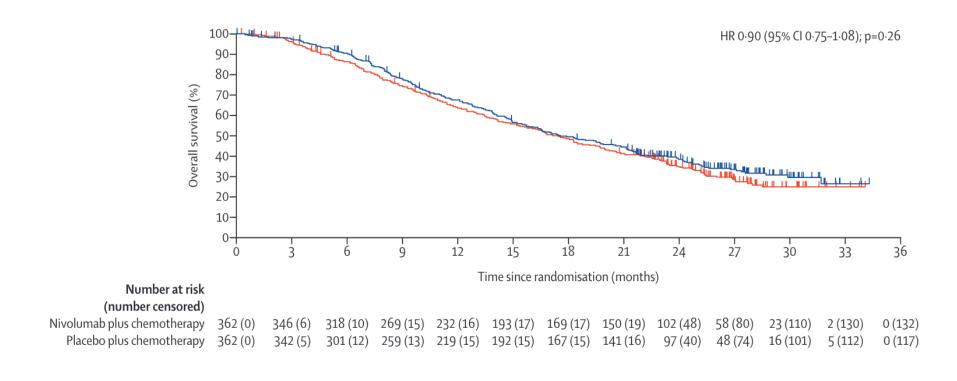
TRAEs with potential immunologic etiology

	NIVO + chemo (n = 782)					
All treated, ^{a-c} n (%)	Any grade	Grade 3/4 ^d	Median time to onset (range), weeks	Median time to resolution (range), weeks	Resolved, n (%)	Patients receiving IMM, n (%)
Endocrine	109 (14)	6 (<1)	15.3 (2.0–124.3)	NR (0.4 to 191.3+)	41 (38)	17 (16)
Gastrointestinal	266 (34)	43 (5)	4.3 (0.1–97.3)	1.6 (0.1 to 155.7+)	233 (88)	29 (11)
Hepatic	207 (26)	31 (4)	8.0 (0.1–193.7)	10.1 (0.4 to 203.7+)	156 (76)	24 (12)
Pulmonary	41 (5)	14 (2)	24.0 (1.6–96.9)	10.4 (0.3+ to 174.4+)	30 (73)	31 (76)
Renal	29 (4)	7 (<1)	18.9 (1.7–65.7)	2.9 (0.1 to 67.7+)	22 (76)	7 (24)
Skin	218 (28)	27 (3)	9.9 (0.1–139.4)	23.4 (0.1 to 206.7+)	135 (62)	85 (39)

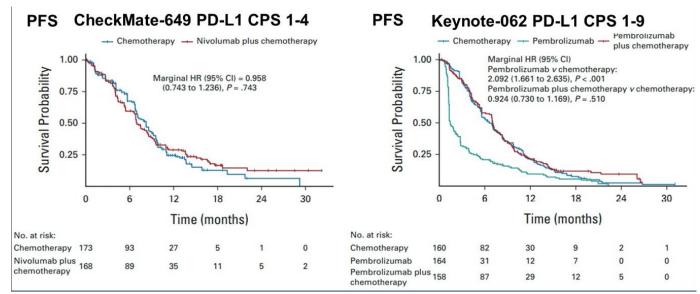
- TRAEs with potential immunologic etiology^{b,c}:
 - Grade 3/4 events occurred in ≤ 5% of patients with NIVO + chemo across organ categories
 - The majority of non-endocrine events with NIVO + chemo resolved (62%-88% across organ categories) with a median time to resolution of 1.6-23.4 weeks

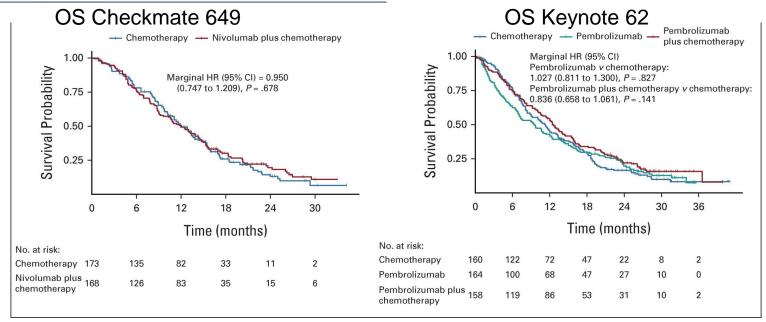

^aPatients who received ≥ 1 dose of study drug; ^bTRAEs with potential immunologic etiology that require frequent monitoring/intervention; ^cAssessed in all treated patients during treatment and for up to 30 days after the last dose of study treatment; ^dThe most common grade 3/4 events (≥ 2%) in the NIVO + chemo arm were diarrhea (n = 35), aspartate aminotransferase increased (n = 13), palmar-plantar erythrodysesthesia syndrome (n = 12), and pneumonitis (n = 12). There were no grade 5 events.

PD-L-1 rate consistent in Phase III studies in EG adenocarcinoma


	Keynote 62	Checkmate 649	Orient 16
Design	Chemo/PD-1 vs chemo PD-1 vs chemo	Chemo/PD-1 vs chemo	Chemo/PD-1 vs chemo
Major enrollment	US/ Europe/ Australia 58%	US 17%, Asia 23%, rest 60%	China
CPS ≥ 5	NA (37% CPS ≥ 10)	60%	62%
OS HR ITT; CPS ≥ 5; CPS ,<5	NA; CPS ≥1 0.85*; NA; NA and 0.91; NA;NA	0.80; 0.71; 0.94	0.76; 0.66; NA
ITT PFS	0.84* and 1.66*	0.77	0.63
ITT ORR	49% vs 37% and 15% vs 37%	58% vs 46%	58% vs 48%
Grade 3-5 AEs	73% vs 69% and 17% vs 69%	60% vs 44%	60% vs 52%

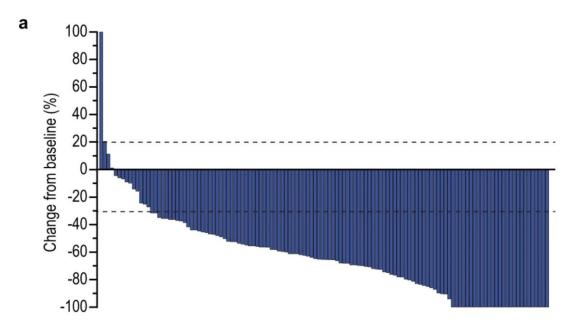
Keynote 62 Pembrolizumab + Chemo vs Chemo:


No improvement in OS

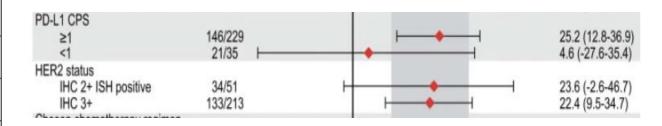


ATTRACTION 4: Nivolumab + Chemo vs Chemo No improvement in OS in Asia

Minimal Survival benefit with anti-PD1 and chemo in PD-L1 low subgroups



Keynote 811: Pembrolizumab/Trastuzumab/Chemotherapy

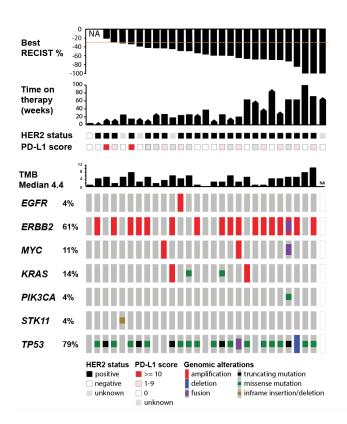

h

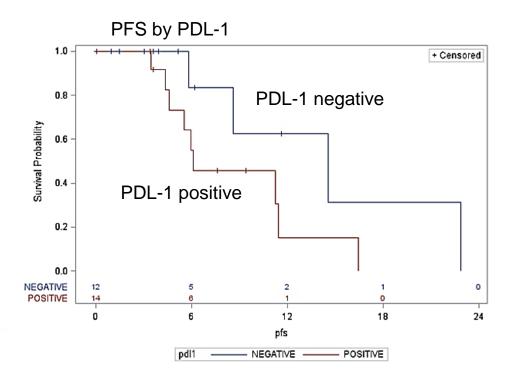
23% improvement in response rate FDA approved May 2021

D	100-	1
	80-	
	60-	
	% 40·]
	Change from baseline (%) 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u></u>
	0.	
	₽ -20-	
	-40	
	ර් ₋₆₀ .	
	-80-	
	-100-	

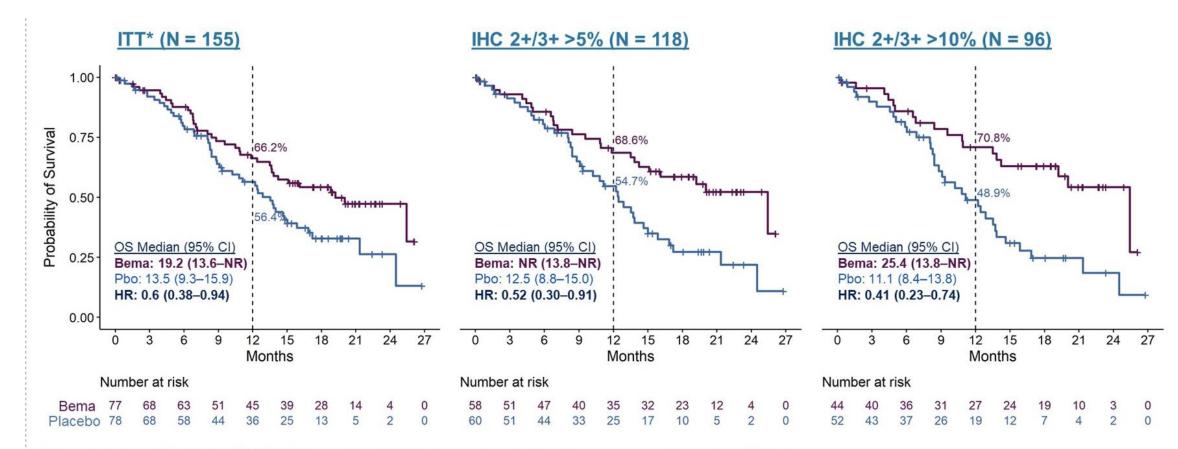
ORR and DCR, % (95% CI)	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)	
ORR	74.4% (66.2-81.6)	51.9% (43.0-60.7)	
ORR Difference ^b	22.7% (11.2-33.7) P = 0.00006		
DCR	96.2% (91.4-98.8)	89.3% (82.7-94.0)	
Complete response	15 (11%)	4 (3%)	

Biomarker Analysis Phase II PEMBRO/TRAZ


Level of ERBB2 and co-occurring alterations Not PDL-L1 predict PFS


- No MSI tumors in HER2+ mEGA
 - -- Median TMB 4.4 mut/MB (range 0 to 10.6)

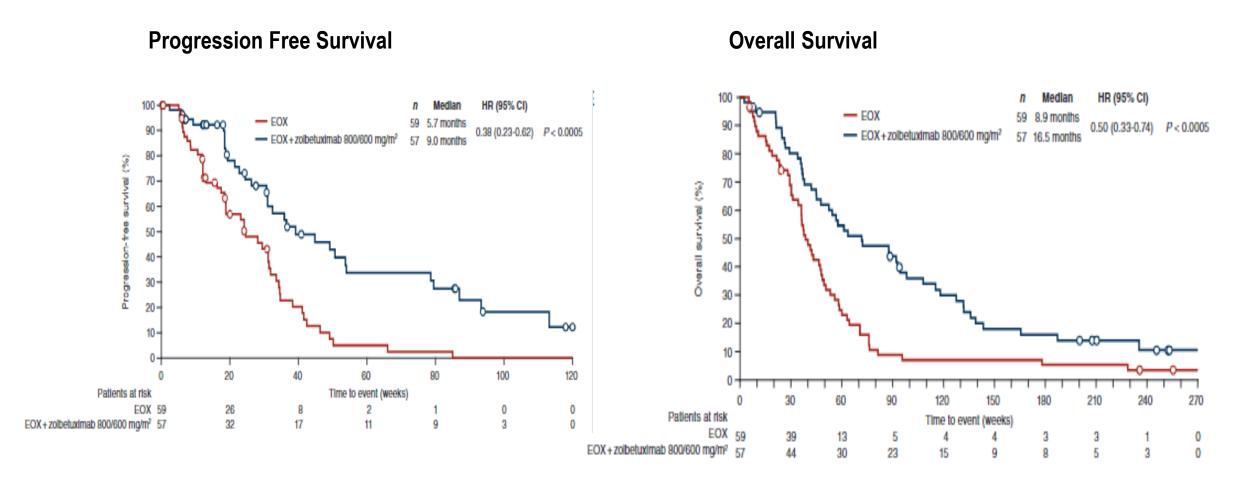
-- PFS (log-rank p=0.10) or OS (log-rank p=0.60) between PDL-1 positive and negative



^aAmong patients with evaluable tissue (n = 29). Janjigian YY et al. *Lancet Oncol*. 2020;21:821-831.

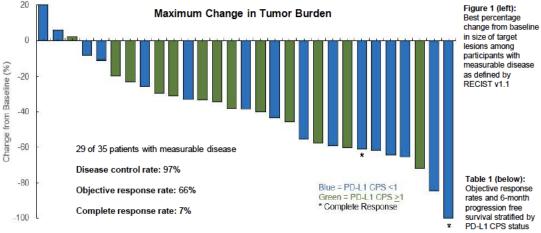
Anti-FGFR2b antibody with chemotherapy in FGFR2b+ gastric cancer:

5.7 months improvement in median OS


^{*}ITT = includes 149 patients with IHC 2+/3+ and 6 with IHC <2+ or not available who were enrolled based on ctDNA alone. NR, not reached.

Median Follow-up 12.5 months

*Based on February, 28th 2021 data cut


Anti-CLDN18.2 antibody with chemotherapy in CLD18.2+ gastric cancer:

7.6 months improvement in median OS

Regorafenib/Nivolumab/FOLFOX

Phase II MSKCC IST

PD-L1 CPS <1

16 (55%)

69%

20 (59%)

75%

PD-L1 CPS >1

13 (45%)

62%

14 (41%)

64%

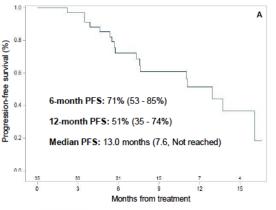
Total

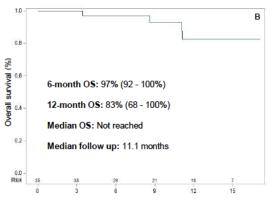
29 (100%)

34 (100%)

Number (percent) patients

with measurable disease

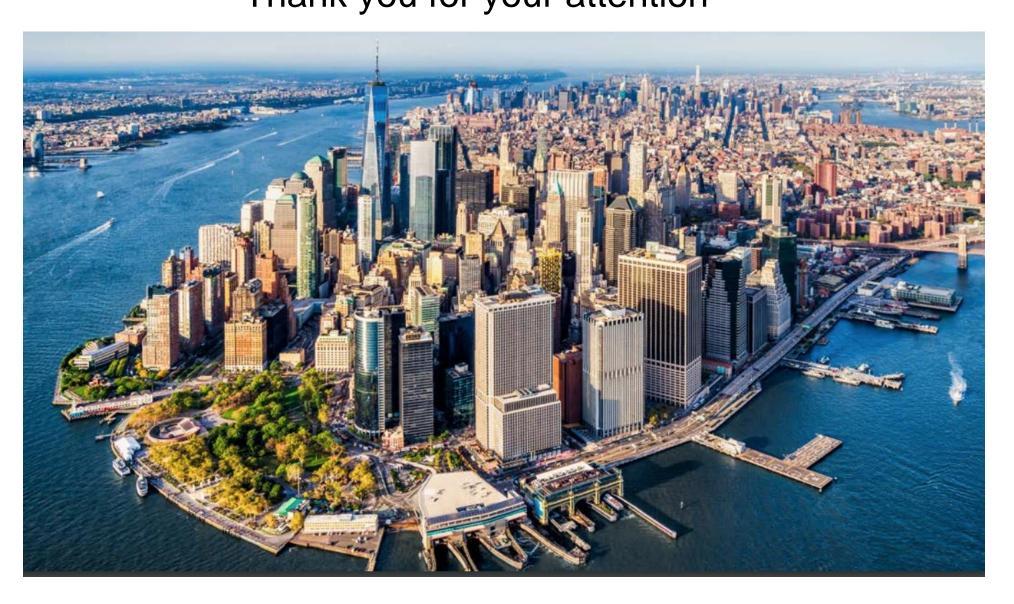

ORR


Number (percent) patients

with evaluable disease

6-month PFS

onse *	progression free survival stratified by PD-L1 CPS status	
PD-L1 CPS 1-4	PD-L1 CPS ≥5	
6 (21%)	7 (24%)	
50%	71%	
5 (15%)	9 (27%)	
100%	44%	


Samuel Cytryn, MD MSKCC Research Fellow

Conclusions

PDL1 testing is mandatory to improve outcomes and minimize adverse events

- Anti-PD-1 therapy improves survival & transforms patient lives
- We can do better with combination therapies for PDL1 low/negative tumors
- Greater magnitude of benefit in biomarker enriched populations
- Critical to continue to test for HER2, MSI, EBV, and PD-L1
- Prioritize biomarker selected subgroups in HER2, EGFR, FGFR2a, CLD18.2, PD-L1 over unselected approaches
- The future is bright for gastric cancer biomarker selected strategies

Twitter: @yjanjigianMD Thank you for your attention

