

PD-1 checkpoint inhibitors in sarcoma: Evidence and future indications

Sandra P. D'Angelo, MD
Associate Attending, Research Director
Sarcoma Medical Oncology
Early Drug Development
Cellular Therapeutics Core
Memorial Sloan Kettering Cancer Center

DECLARATION OF INTERESTS

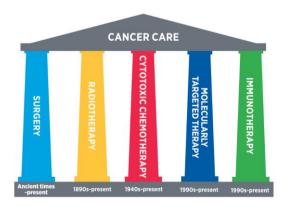
Sandra D'Angelo

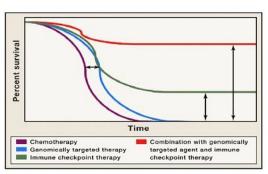
Commercial Interest(s)	Nature of Relationship
Amgen, EMD Serono, GlaxoSmithKline, Immune design, Adaptimmune, Incyte, Merck, Nektar, Immunocore, Servier	Consulting/Advisory Role/Honorarium
Amgen, BMS, Deciphera, EMD Serono, Incyte, Merck, Nektar	Research Funding
Adaptimmune, EMD Serono, Nektar	Travel, accommodations, expense

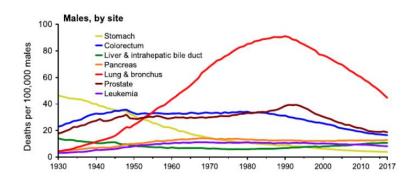
Objectives

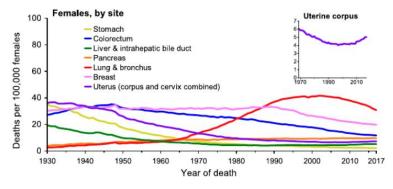
Discuss the role of checkpoint blockade in the treatment of sarcoma

- History
- Challenges
- Success
- Biomarkers
- Future directions

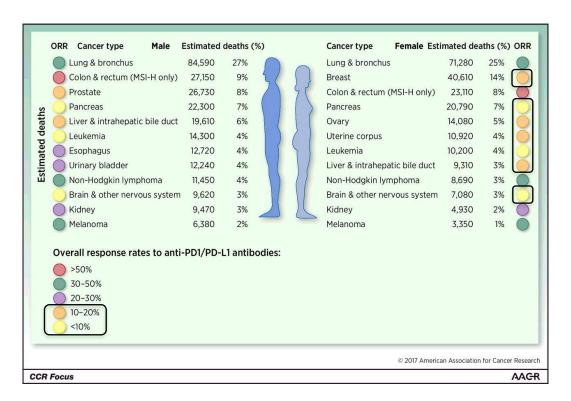


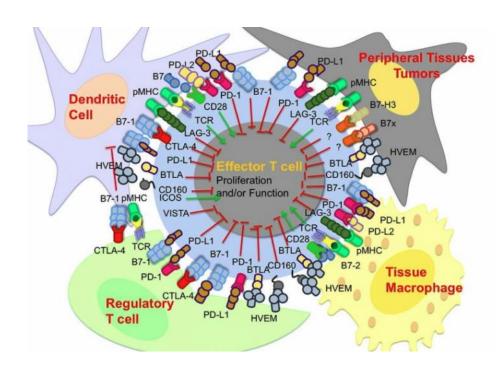

Rapid revolution in immunotherapy field



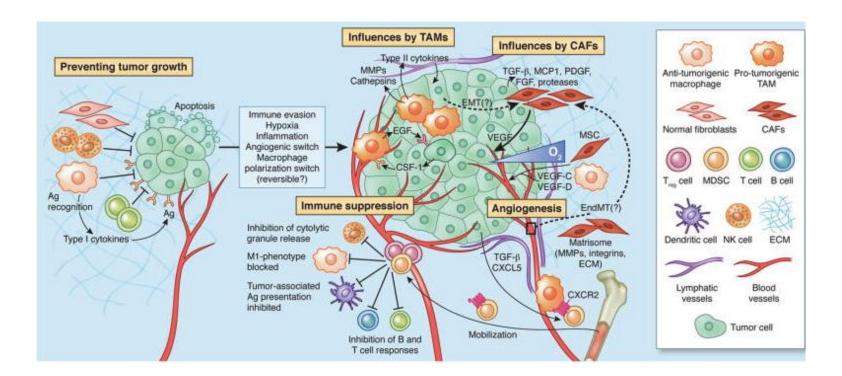


Unprecedented decrease in mortality

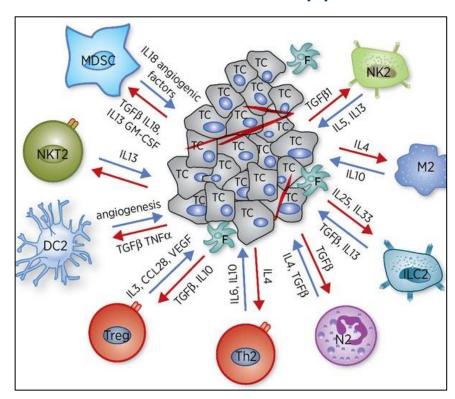



Success of checkpoint blockade

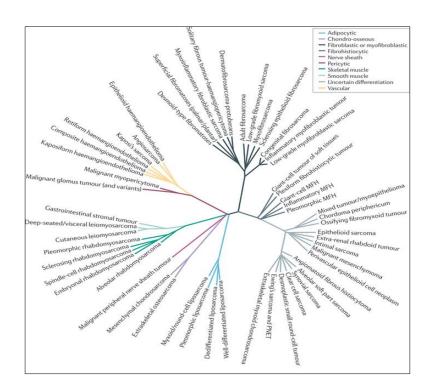
ORR remains in 10-20% range and often not durable

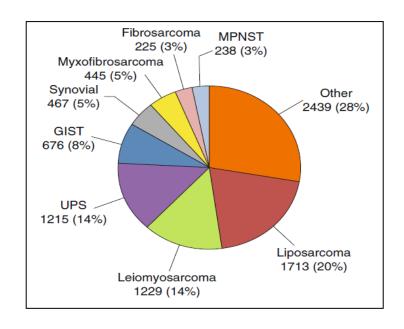


Immunomodulatory pathways are complex

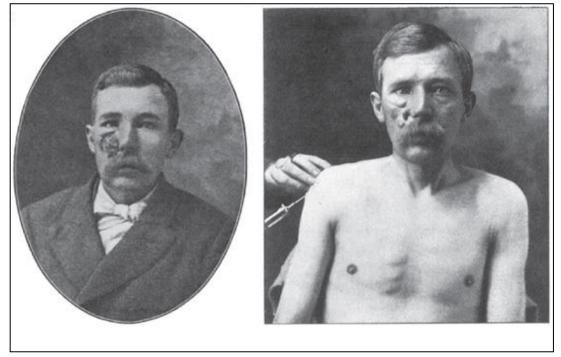


Tumor microenvironment is complex

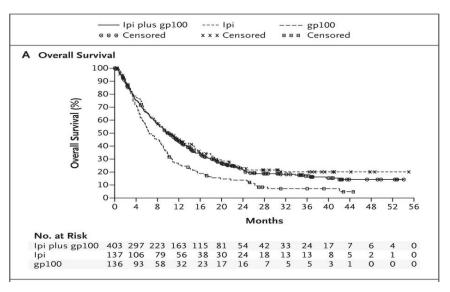



Numerous immunosuppressive signals exist

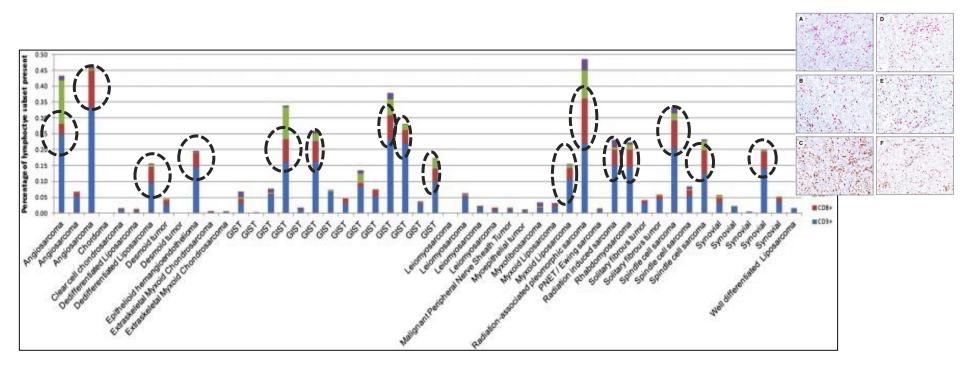
Biggest challenge heterogeneity of sarcoma



Idea of immunotherapy in sarcoma is not new



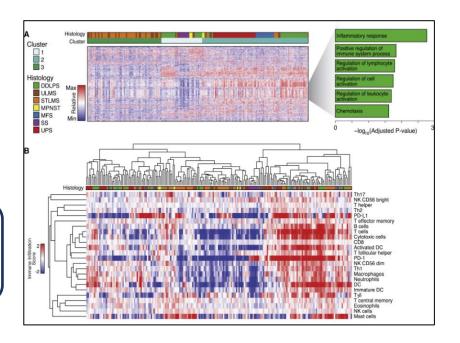
Ipilimumab initiated modern day immunotherapy



Circa 2005: Ipilimumab in Synovial sarcoma

Age	Gender	NY-ESO-1 immuno- histochemistry	HLA- A2	HLA- DP4	Time to progression (months)	Overall survival (months)
43	F	3+	+	+	1.9	3.8
26	F	4+	+	+	0.9	19.7
56	M	3+	+	+	1.9	13.7
32	F	3+	-	+	2.1	3.2
57	F	3+	-	-	0.5	0.8
23	M	2+	+	+	1.8	13.7

PD-L1 expression and TIL infiltrates vary based on sarcoma subtype



Sarcoma TCGA further illustrates variability

UPS/MFS and DDLPS had the highest median macrophage scores

STLMS had highest PD-L1 score

Subset of DDLPS with immune signatures of T cell activation

DDLPS had highest CD8 score

Sarcoma checkpoint inhibitor studies

Disease	Checkpoint inhibitor	Partner	n	ORR	Median PFS (m)	Author
LMS, UPS, GIST, others	Pembrolizumab	Cyclophosphamide	50	6.70%	1.4	Le Cesne et al
STS	Pembrolizumab	Axitinib	33	25%	4.7	Wilky et al
All Sarcoma	Nivolumab +/- ipilimumab	None	43/42	5%/16%	1.7 /4.1	D'Angelo et al
STS	Pembrolizumab	Cyclophosphamide	57	2%	1.4	Toulmonde et al
All Sarcoma	Pembrolizumab	None	84	18%/5%	4.5/2	Tawbi et al
STS	Ipilimumab	Dasatinib	28	0%	2.8	D'Angelo et al
All Sarcoma	Durvalumab	Tremelimumab	57	14.3%	4.5	Somaiah et al
GIST, UPS, DDLPS	Nivolumab +/- ipilimumab	None	66	0% -14%	1.5 - 5.5	Chen et al
STS	Pembrolizumab	Doxorubicin	30	33%	6.9	Livingston et al
STS	lpilimumab/Nivolumab	Trabectedin	41	19.50%	6	Gordon et al
STS	Nivolumab	Sunitinib	68	13%	5.6	Martin-Broto
Bone	Nivolumab	Sunitinib	40	5%	3.7	Palmerini et al
STS	Pembrolizumab	Doxorubicin	37	22%	8.1	Pollack et al

ORR consistently < 20% in unselected histologies

ORR <20% with standard chemotherapy

	ORR	os	PFS
Pazopanib vs placebo *non-	6% vs 0	12.5m vs 10.7m	4.6m vs 1.6m
adipocytic STS			
Eribulin vs DTIC * <u>LPS</u> /LMS	4% vs 5%	13.5m vs 11.5m	2.6m vs 2.6m
Trabectin vs DTIC *LPS/LMS	9.9% vs	12.4m vs 12.9m	4.2m vs 1.5m
	6.9%		
Dox olara vs dox *STS	18% vs 12%	26.m vs 14.7m	4.1m vs 6.6m
Gem doce vs gem*STS	16% vs 8%	18m vs 11.5m	6.2m vs 3m

What is the impact of trial design? Lack of signal? Lack of efficacy?

Recent sarcoma successes have been in histology specific studies

M \(\) Pexidartinib versus placebo for advanced tenosynovial giant cell tumour (ENLIVEN): a randomised phase 3 trial

William D Tap, Hans Gelderblom, Emanuela Palmerini, Jayesh Desai, Sebastian Bauer, Jean-Yves Blay, Thierry Alcindor, Kristen Ganjoo, Javier Martín-Broto, Christopher W Ryan, David M Thomas, Charles Peterfy, John H Healey, Michiel van de Sande, Heather L Gelhorn, Dale E Shuster, Qiang Wang, Antoine Yver, Henry H Hsu, Paul S Lin, Sandra Tong-Starksen, Silvia Stacchiotti*, Andrew J Wagner*, on behalf of the ENLIVEN investigators†

ABI-009 (nab-sirolimus) in Advanced Malignant Perivascular Epithelioid Cell Tumors (PEComa): Preliminary Efficacy, Safety, and Mutational Status from AMPECT, an Open-label Phase 2 **Registration Trial**

Andrew J. Wagner, MD, PhD, ¹ Vinod Ravi, MD, ² Kristen N. Ganjoo, MD, ³ Brian A. Van Tine, MD, ⁶ Richard F. Riedel, MD, ⁵ Rashmi Chugh, MD, ⁶ Lee D. Cranmer, MD, PhD, F. Maria Gordon, MD, Jason L. Hornick, MD, PhD, David J. Kwiatkowski, MD, PhD, Heng Du, MD, F Berta Grigorian, 10 Anita N. Schmid, PhD, 10 Shihe Hou, PhD, 10 Katherine Harris, DrPH, 10 Neil Desai, PhD, 10 Mark A. Dickson, MD13

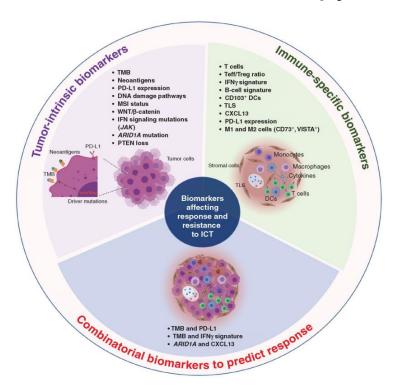
Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study

Mrinal Gounder, Patrick Schöffski, Robin L Jones, Mark Agulnik, Gregory M Cote, Victor M Villalobos, Steven Attia, Rashmi Chugh, Tom Wei-Wu Chen, Thierry Jahan, Elizabeth T Loggers, Abha Gupta, Antoine Italiano, George D Demetri, Ravin Ratan, Lara E Davis, Olivier Mir, Palma Dileo, Brian A Van Tine, Joseph G Pressey, Trupti Lingaraj, Anand Rajarethinam, Laura Sierra, Shefali Agarwal, Silvia Stacchiotti

ORIGINAL ARTICLE

Sorafenib for Advanced and Refractory **Desmoid Tumors**

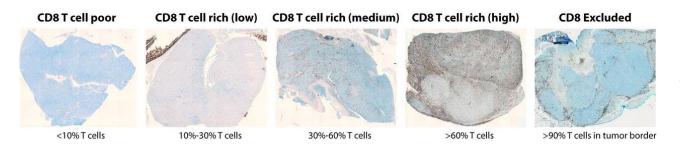
Mrinal M. Gounder, M.D., Michelle R. Mahonev, M.S., Brian A. Van Tine, M.D., Ph.D., Vinod Ravi, M.D., Steven Attia, D.O., Hari A. Deshpande, M.D., Abha A. Gupta, M.D., Mohammed M. Milhem, M.D., Robert M. Conry, M.D., Sujana Movva, M.D., Michael J. Pishvaian, M.D., Ph.D., Richard F. Riedel, M.D., Tarek Sabagh, M.D., William D. Tap, M.D., Natally Horvat, M.D., Ethan Basch, M.D., Lawrence H. Schwartz, M.D., Robert G. Maki, M.D., Ph.D., Narasimhan P. Agaram, M.B., B.S., Robert A. Lefkowitz, M.D., Yousef Mazaheri, Ph.D., Rikiya Yamashita, M.D., Ph.D., John J. Wright, M.D., Ph.D., Amylou C. Dueck, Ph.D., and Gary K. Schwartz, M.D.

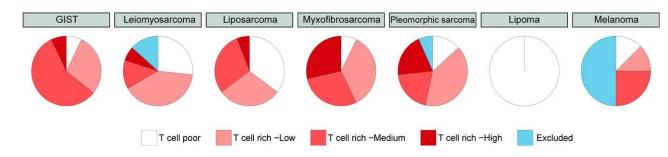


Sorting/splitting may tease out efficacy (or lack of)

Histology	Drugs	Response rate
UPS	Pembrolizumab Nivolumab + ipilimumab	23% 29%
ASPS	Atezolizumab Pembrolizumab + axitinib	42% 55%
Angiosarcoma	CTLA4 blockade, pembrolizumab, pembrolizumab + axitinib	71%
DDLPS	Pembrolizumab Nivolumab + ipilimumab	10% 14%
Osteosarcoma	Pembrolizumab	4.5%
Uterine LMS	Nivolumab	0%

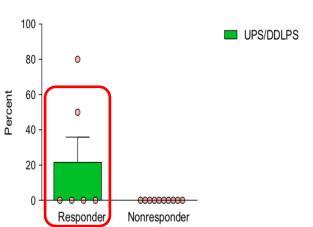
Predictive biomarkers to immunotherapy



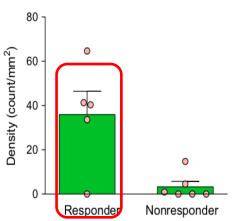

IHC-based immune biomarker studies

Sarcoma histology	N	CD4+	CD8+	FOXP3+	CD20+	CD163+	PD-1+ TILs	PD-L1+ tumor	Ref.
									[57]
Soft-tissue sarcoma	82								[61]
	203								[38]
	33								[31]
Soft-tissue sarcoma with 1+ recurrence	72								[39]
Soft-tissue sarcoma with wide margins	108								[43]
Copy-number driven sarcomas	769								[10]
Alveolar rhabdomyosarcoma	20								[27]
Dodifferentiated linearyses	58		**	**					[10,49]
Dedifferentiated liposarcoma	32								[62]
Desmoplastic small round cell tumor	11		**				**	**	[27]
Embryonal rhabdomyosarcoma	19								[34]
Leiomyosarcoma	17								[33]
Malignant peripheral nerve sheath tumor	76		**	**					[10]
Myxoid liposarcoma	39			<i> </i> **					[10]
Osteosarcoma	62								[56]
Retroperitoneal liposarcomas (well-differentiated, dedifferentiated, myxoid/round cell and pleomorphic liposarcoma)	56								[30]
Solitary fibrous tumors	100								[49]
O maried annual and	36								[32]
Synovial sarcoma	22								[27]
	57			1		- 0			[40]
Undifferentiated pleomorphic sarcoma	60								[62]

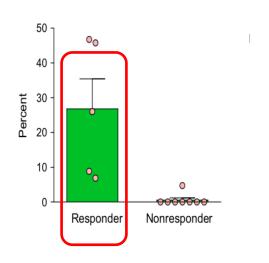
Differential quantities of immune cells exist


Variation in numbers of CD8+ T cells across STS subtypes

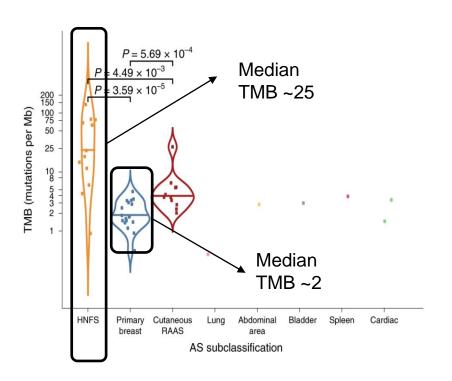
 Highest in GIST and MFH compared to DDLPS

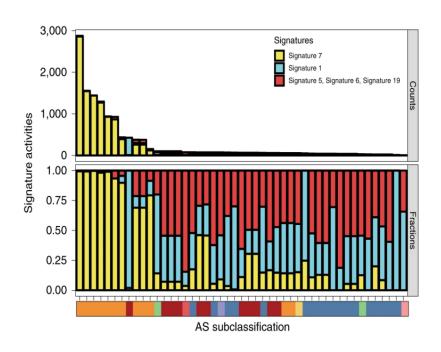


SARC028: Baseline TIL, Tumor infiltrating macrophages and PD-L1 + (UPS/DDLPS) correlate with efficacy

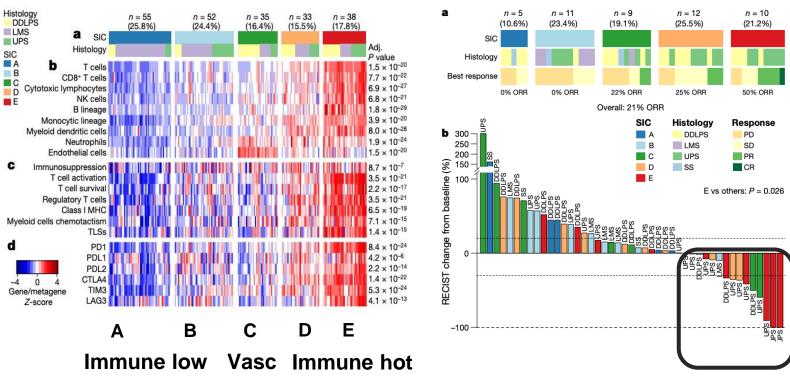


Density of TIL at baseline

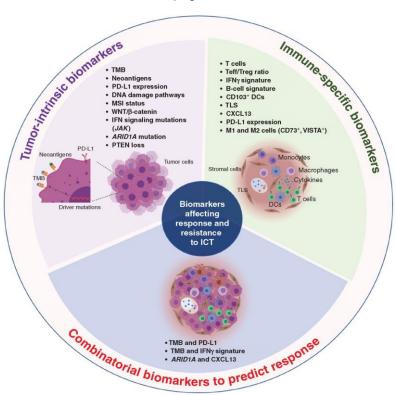

% Tumor infiltrating macrophages at baseline



Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.


High TMB/UV signature: Head and neck

Tertiary lymphoid structures and "hot" tumors

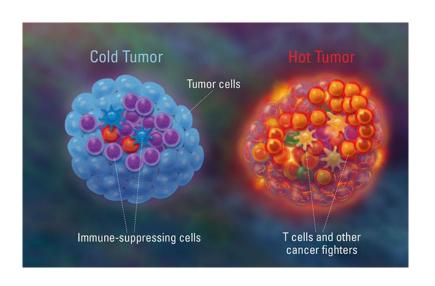

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

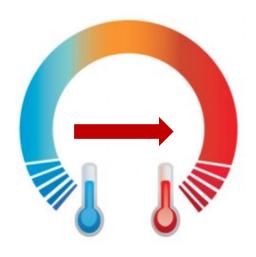
Sandra P. D'Angelo, MD
Petitprez et al. Nature 2020

Biomarkers to immunotherapy in Sarcoma

Tumor-intrinsic

- Low TMB
- Limited neoAg
- 20% LMS DDR
- Variable PDL1 expression
- MSI high uncommon
- Limited PTEN loss



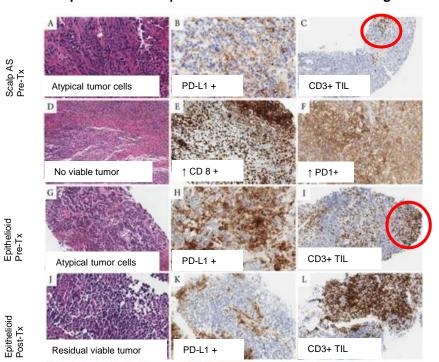

Immune-specific

- Variable T cells
- B cell signature
- IFN signature
- High M2

What is the optimal way to convert tumors and increase immune infiltrates?

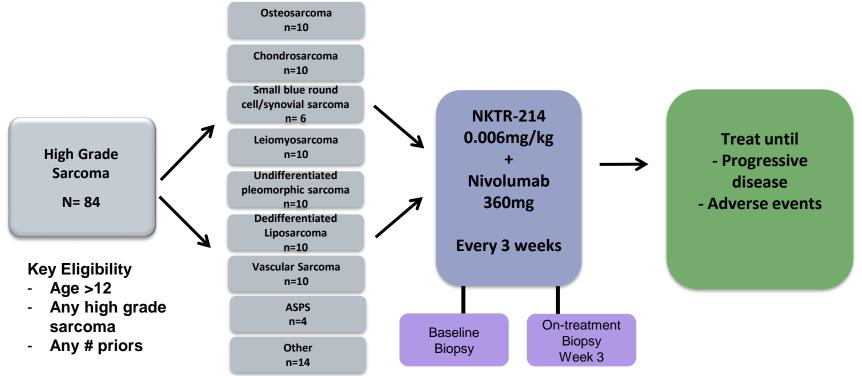
Pembrolizumab + TVEC in sarcoma

Variable	RECIST v1.1 (n = 20)	Immune-Related RECIST (n = 20)	
Objective response, No. (%)	ORR 1	35%: mDOR	- 56.1 weeks
Best overall response	71	•	
Complete response	0		na, Cutaneous
Partial response	7 Angios	sarcoma, UF	PS, Myxofibrosarcoma,
Stable disease	⁷ Sarco	ma unclassif	fied
Progressive disease	6 (30)	8 (40)	
Best objective response rate, No. (%)	7 (35)	7 (35)	A. 64 y/o F, locally advanced
At 24 wk	6 (30)	6 (30)	
Disease control rate, No. (%)	14 (70)	12 (60)	
Duration of recourse			O - wo
. (%)	7 (35)	7 (35)	
	56.1 (49.4-87)	56.1 (49.4-87)	
se Evalua	tion Criteria In Sol	id Tumors.	



Pembrolizumab + TVEC in sarcoma

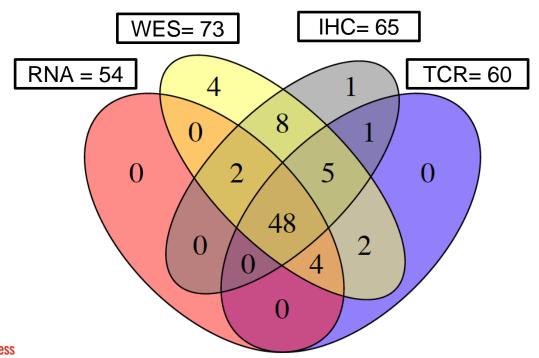
Response: PDL1 expression and TILs at the tumor edge


A subset of tumors were "converted" turning from cold to hot

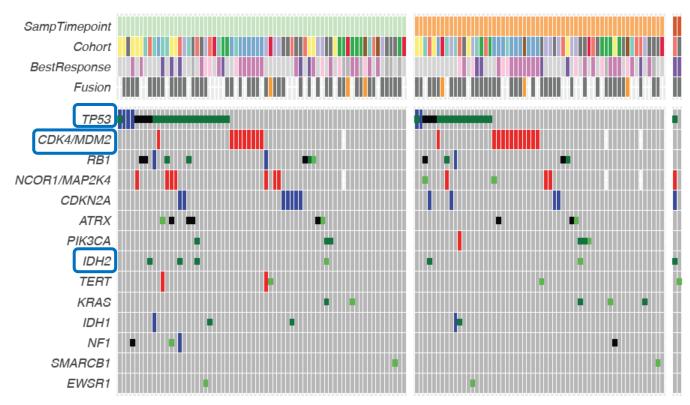
Best Objective	PD-L1 status (tumor)	(MPS)(Percent	TIL Score		Histology
Response	Pre- Treatment	Post- Treatment	Pre- Treatment	Post- Treatment	
PR	N/A	+ve (10)(5)	N/A	3	UPS
PR	N/A	+ve (60)(75)	N/A	3	UPS
PR	N/A	N/A	N/A	N/A	Myxofibrosarcoma
PR	-ve	+ve (5)(5)	1	3	Angiosarcoma
PR	-ve	+ve (60)(60)	3	3	Angiosarcoma
PR	+ve (15)(15)	N/A	3	N/A	Epithelioid Sarcoma
PR	-ve	N/A	3	N/A	Sarcoma NOS
SD	-ve	+ve (5)(5)	1	3	LMS
SD	-ve	-ve	1	1	ESMC
SD	-ve	-ve	2	1	LMS
SD	-ve	-ve (5)(20)	3	3	LMS
SD	-ve	+ve (90)(65)	2	3	LMS
SD	N/A	+ve (25)(90)	N/A	3	Sarcoma NOS MSI High
SD	-ve	-ve	2	0	ASPS
PD	-ve	N/A	2	N/A	Synovial Sarcoma
PD	-ve	-ve	0	0	Chondrosarcoma
PD	-ve	N/A	3	N/A	Angiosarcoma
PD	-ve	N/A	2	N/A	Sarcoma NOS
PD	-ve	+ve (5)(30)	1	3	MPNST
PD	-ve	-ve	2	3	LMS

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

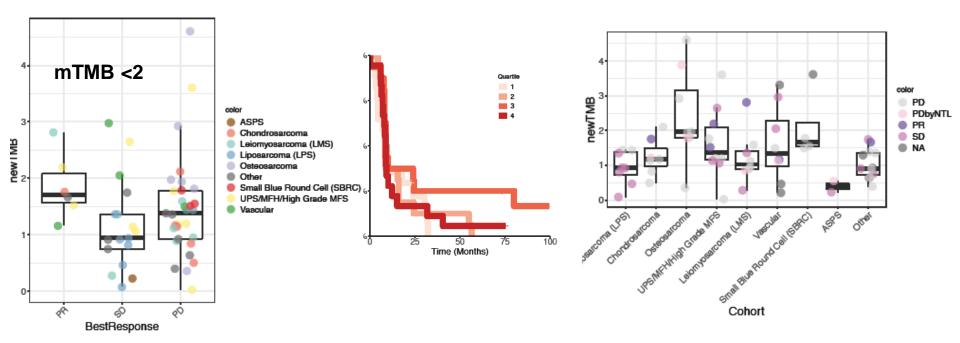
Bempegaldesleukin+ nivolumab in sarcoma


Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

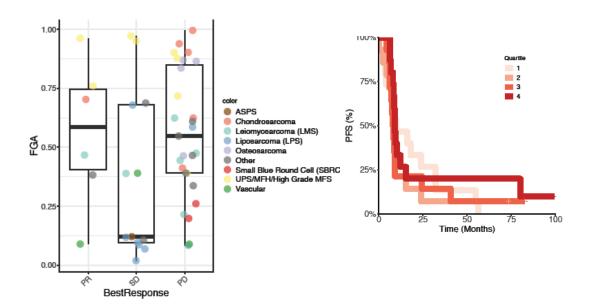
Waterfall plot demonstrates decrease in tumor burden

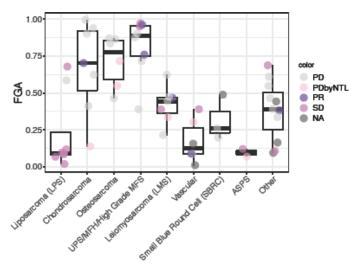


Define the sarcoma IO landscape

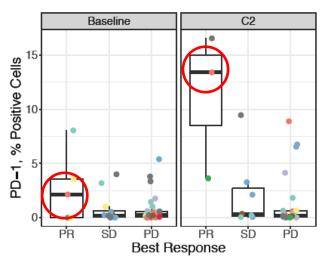


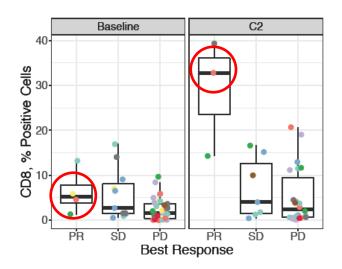
Genomic features of sarcomas




Low TMB which didn't correlate with efficacy

FGA did not correlate with efficacy

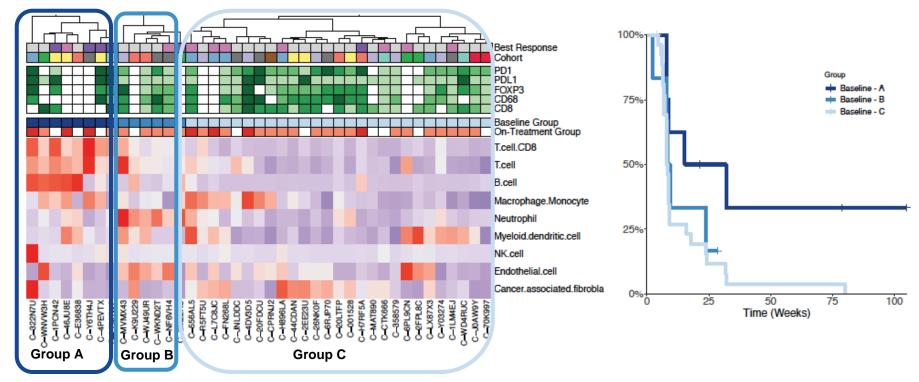




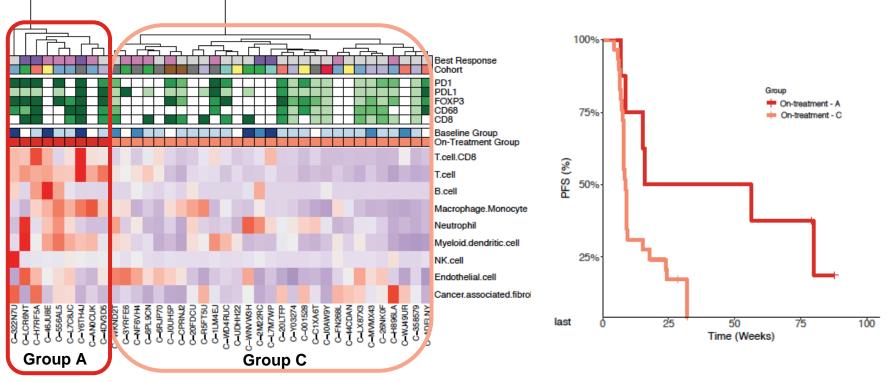
Immune cell populations by IHC

PD-1 expression at baseline and on-treatment associated with ORR

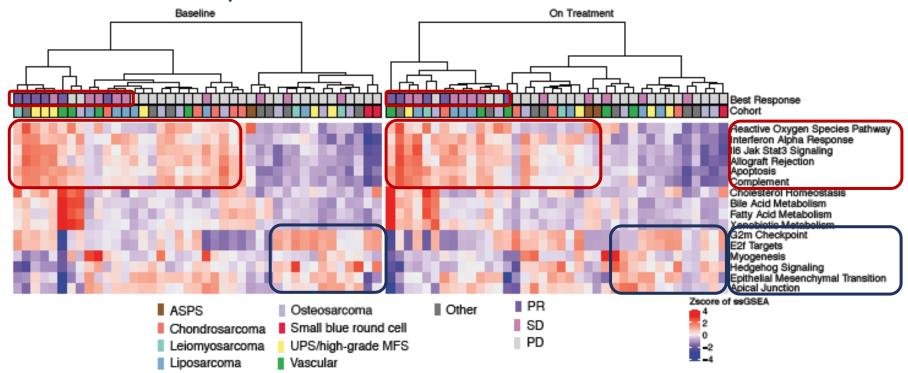
CD8+ T cells on treatment associated with ORR



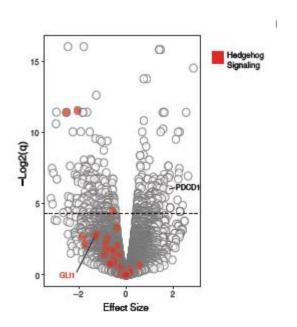
% change in PD-1+ cells

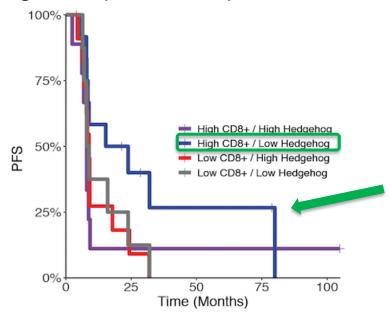


Baseline classification: Immune-hot (A), intermediate (B), Immune cold (C)



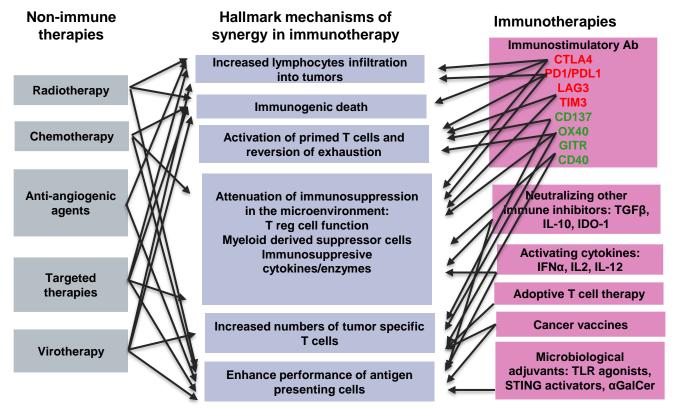
On-treatment classification: Immune-hot (A) and immune-cold (C)


Immune pathways and hedgehog signaling pathways differentiate responses

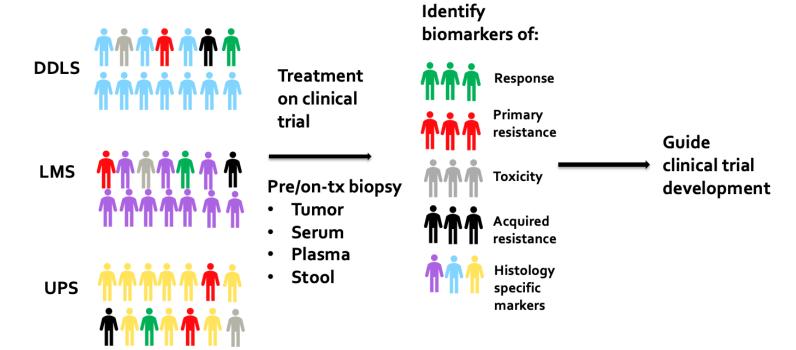


Relevance of hedgehog signaling pathways

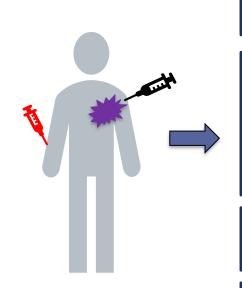
GLI1 was differentially expressed



↑ CD8+ T cell & Low Hh gene expression improved PFS



How should we guide future efforts when the options are endless?



Begin with histology specific cohorts and tissue collection

Pre/on-treatment biopsies

Fresh Tumor

- PDX models
- Tumor cell lines

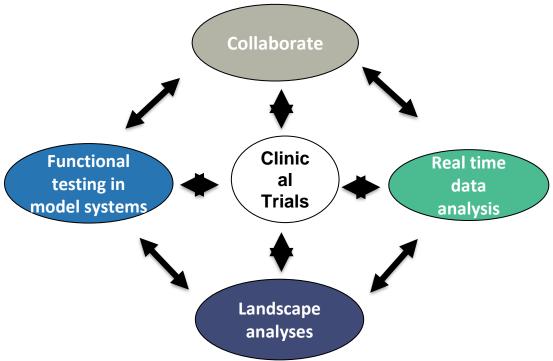
Fresh Frozen

- Whole exome sequence: TMB, genomic alterations
- RNA sequence: Immune signatures such as T cell activation, ag presentation, PD1 response, T cell inclusion, macrophages

 Multiplex IHC: CD3,8,FoxP3, PD1, PDL1, LAG, Tim3,

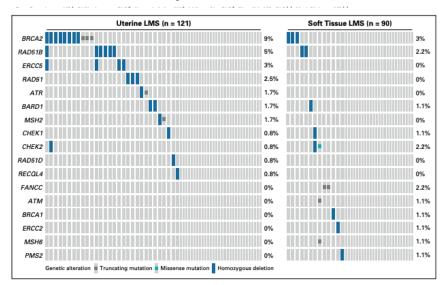
PBMC

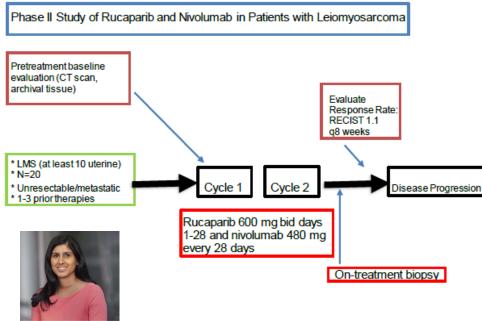
Flow Cytometry


Fecal Microbiome

Correlate with efficacy

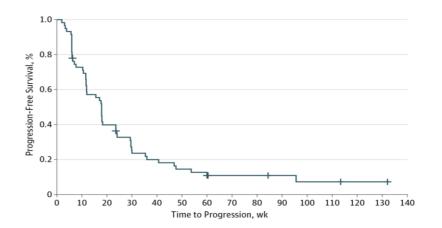
Bi-directional flow will enhance clinical trial development

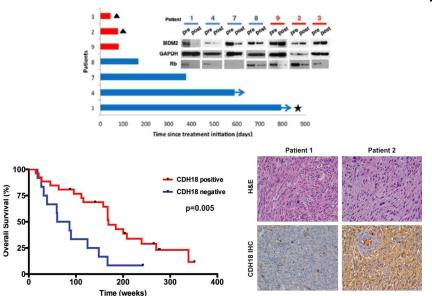




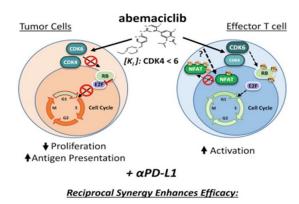
Exploring PARP inhibition with checkpoint blockade in LMS leveraging DDR alterations

PRECISION MEDICINE


Clinical Outcome of Leiomyosarcomas With Somatic Alteration in Homologous Recombination Pathway Genes


CDK4 inhibitors demonstrate promising progression free survival in DDLPS

Palbociclib 125 mg PO 3 weeks on/1 off


PFS 12 Weeks: 57 % Median PFS: 18 weeks

MDM2 downregulation, ATRX, and CDH18 are biomarkers senescence and correlate with efficacy



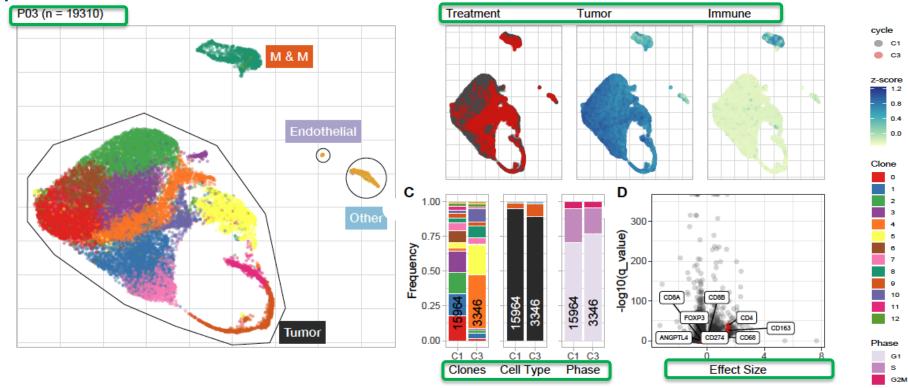
Bridging the gap between immunotherapy and cell cycle biology

Phase II study of Palbociclib + INCMGA0012 in Dedifferentiated liposarcoma

NCT04438824

★ Cell Cycle Genes

♦♠ MHC-I/MHC-II


♦ Inflammation

♦T cell Infiltration

★ T cell Effector Function

♠ MΦ & DC activation

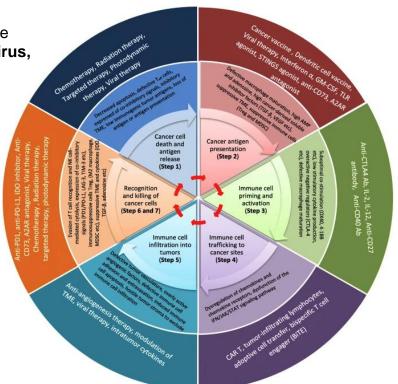
Single sequencing of baseline/on-treatment DDLPS biopsy specimens

Future potential targets

Cancer cell death and ag release

Viral therapy (HSV, adenovirus, measles, reovirus)

- Targeted therapy


- Chemotherapy

Recognition killing of cancer cells/cancer antigen presentation

- CD73
- A2AR antagonist

Immune cell infiltration into tumors

- Intratumor cytokines
- TME modulation

Immune cell priming and activation

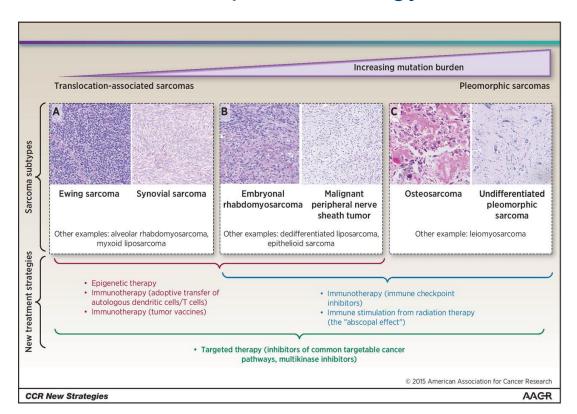
- IL-12
- IL-15
- Anti-CD40ab
- Anti-CD47

Immune cell trafficking

- Chimeric antigen receptors

Progress of immunotherapy...Towards increased specificity

Checkpoint inhibitors CD19 CAR Allogeneic IL-2 Stem Cell Sipuleucel-T CD19/CD3 B cell ALL **Transplant** metastatic RCC bispecific vaccine large B cell B cell ALL ALL prostate ca 2004 1986 1992 2010 2015 1970 2011 2014 2017 **Imiquimod Ipilimumab TVEC** stimulates IFNα melanoma melanoma TNF, IL-12 & hairy cell IFNγ leukemia basal cell


Tailoring options based on specific biology

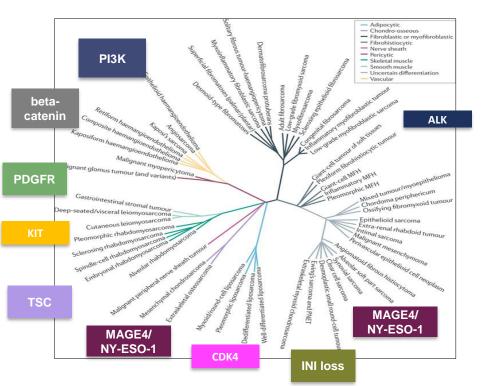
Translocation driven sarcomas

 Adoptive cell therapy

Epitheliod sarcomas, MPNST,

 epigenetic therapy + IO

UPS (high TMB, high immune infiltrates, tertiary lymphoid structures)


 Monotherapy checkpoint blockade

LMS/Osteosarcoma

- Time to look beyond PD1 blockade
- Explore novel targets/combinations CD47, A2AR

Continue to expand IO in sarcoma, must be specific and strategic

Can we take it any further?

Past Present Future: Precision immunotherapy Biopsy and sequence sarcoma **DDLPS** Identify pt/tumor specific LMS antigens **UPS** Characterize the patient **UPS** genome Enroll in Characterize immune microenvironment clinical trial **DDLPS** (bulk/scRNA,IHC multiplex, CODEX) Checkpoint Personalized inhibitors vaccine Angiosarcoma Novel Adoptive cell Targeted Enroll in combinations therapy therapy clinical trial Synovial UPS **DDLPS** LMS Sarcoma

Sandra P. D'Angelo, MD

Conclusions

A subset of sarcomas are immunogenic and are most likely to benefit from monotherapy checkpoint inhibition. Most others will require combinatorial strategies or alternative approaches

Biomarkers such as CD8+ T cells, tertiary lymphoid structures can identify responding tumors and while "Immune conversion" is feasible in sarcoma...it remains an uncommon event

Designing clinical trials with histology specific cohorts, pre/on-treatment biopsies while taking into account underlying biology will contribute to further characterization of the molecular and immunological features of these tumors

Bidirectional flow of information (clinical/lab) along with multi-institutional collaborations will contribute to practice changing efforts

MSK team

Sarcoma Medical Oncology

- Lauren Banks
- Jason Chan
- Ping Chi
- Mark Dickson
- Mrinal Gounder
- Mary Louise Keohan
- Ciara Kelly
- Benjamin Nacev
- Evan Rosenbaum
- William D. Tap
- Katherine Thornton
- Viswatej Avutu

Surgical Oncology

- Samuel Singer
- Sam Yoon
- Aimee Crago
- Edmund Bartlett
- Murray Brennan

Sarcoma Pathology

- Cristina Antonescu
- Meera Hameed
- Narsi Agaram

Pediatric Oncology

- Julia Glade-Blender
- Emily Slotkin
- Leonard Wexler
- Paul Meyers

Early Drug Development

- Alex Drilon
- Margaret Callahan

Cellular Therapeutics

- Christopher Klebanoff
- Renier Brentjens
- Roisin O'Cearbhaill
- Chris Hackett

Support

NIH Supplement Alliance 3U10-CA180821-03

dangelos@mskcc.org

