

Mini Oral Discussion: LBA52, LBA53, LBA 54, and LBA55

Yelena Y. Janjigian, MD Associate Attending Physician, Associate Professor, WCMC

Chief, Gastrointestinal Oncology Memorial Sloan Kettering Cancer Center

Twitter: @yjanjigianMD

Friday, 17 September 2021 15 Minutes

DECLARATION OF INTERESTS

Consulting fees and travel funding from

Bristol-Myers Squibb

Merck Serono, RGENIX

Eli Lilly

Daiichi—Sankyo

Pfizer, Bayer

Imugene

Merck

Zymeworks Inc.

Seagen

Basilea Pharmaceutica

AstraZeneca

Michael J Hennessy Associates

Paradigm Medical Communications

Funds for research support from

NCI

Department of Defense

Cycle For Survival

Fred's team

RGENIX

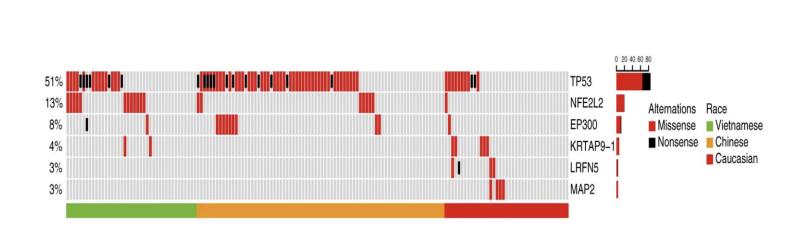
Bayer

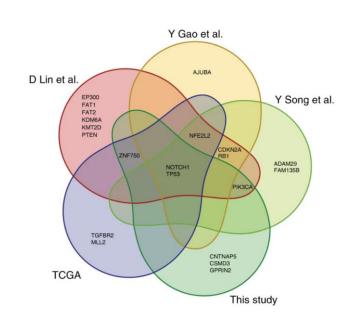
Genetech/Roche,

Bristol-Myers Squibb

Eli Lilly

Merck


Immunotherapy and HER2 Inhibition


- Randomized Phase III first-line studies of sintilimab (anti-PD-1)/chemotherapy
 - Orient 15-- esophageal SCC
 - Orient 16-- gastric/GEJ adenocarcinoma
- HER2-positive gastric/GEJ adenocarcinoma
 - Phase II first-line study nivolumab/trastuzumab/chemo vs.
 nivolumab/ipilimumab/trastuzumab
 - Phase II second-line study of T-Dxd in Western patients

Immunotherapy in Esophageal Squamous Cancer

- First-line pembrolizumab/fluorouracil/platinum FDA approved irrespective of PDL-1
- Nivolumab with ipilimumab or fluorouracil/platinum improves OS vs chemo
- Second-line or beyond FDA approved
 - Pembrolizumab in CPS ≥10
 - Nivolumab irrespective of PDL-1

Distinct biology of ESCC in East and West

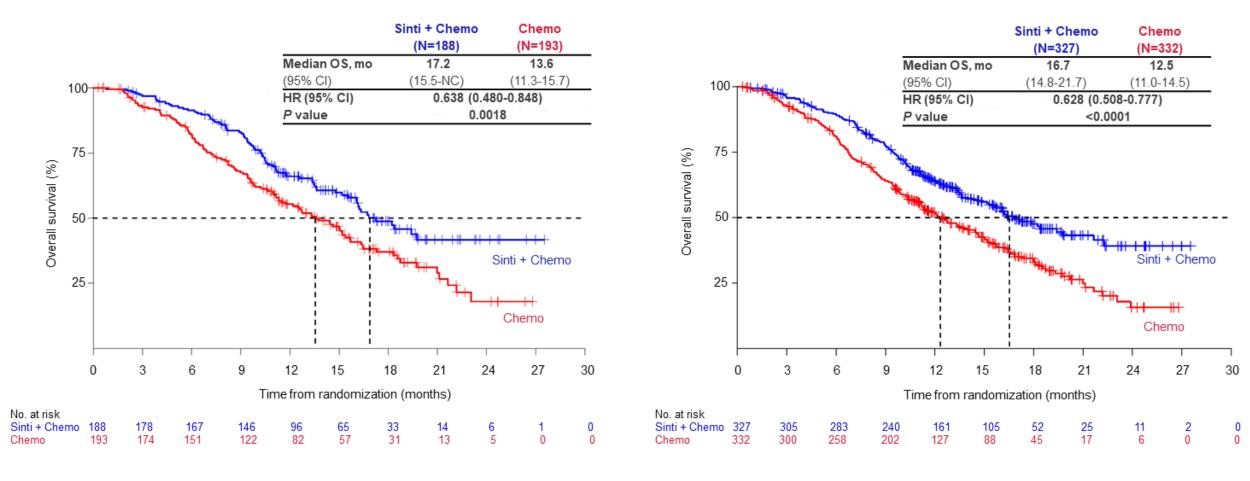
- TP53, EP300, and NFE2L2 alterations more common in patients from China
- CSMD3 mutations more common among Chinese patients and associated with better prognosis

Sintilimab plus chemotherapy versus chemotherapy as first-line therapy in patients with advanced or metastatic esophageal squamous cell cancer: First Results of the Phase 3 ORIENT-15 study

Lin Shen¹, Zhihao Lu², Junye Wang³, Yongqian Shu⁴, Li Kong⁵, Lei Yang⁶, Buhai Wang⁷, Zhiwu Wang⁸, Yinghua Ji⁹, Guochun Cao¹⁰, Hu Liu¹¹, Tongjian Cui¹², Na Li¹³, Wensheng Qiu¹⁴, Zhuo Ma¹⁵, Yuling Chen¹⁵, Haoyu Li¹⁵, Xing Sun¹⁵, Yan Wang¹⁵, Hui Zhou¹⁵

¹Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China, ²Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing, China, ³Department of Oncology, The Affiliated Hospital of Jining Medical College, Jining, China, ⁴Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China, ⁵Special Needs Ward, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China, ⁶Department of Medical Oncology, Nantong Cancer Hospital, Nantong, China, ¬Department of Medical Oncology, Northern Jiangsu People's Hospital, Affiliated Hospital to Yangzhou University, Yangzhou, China, ⁶Department of Radiotherapy and Chemotherapy, Tangshan People Hospital, Tangshan, China, ⁶Department of Medical Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China, ¹¹Department of Medical Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing, China, ¹¹Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, China, ¹³Department of Medical Oncology, Suining Central Hospital, Suining, China, ¹⁴Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China, ¹⁵Medical Oncology, Innovent Biologics, Inc., Suzhou, China, ¹⁶Biostatistics, Innovent Biologics, Inc., Suzhou, China

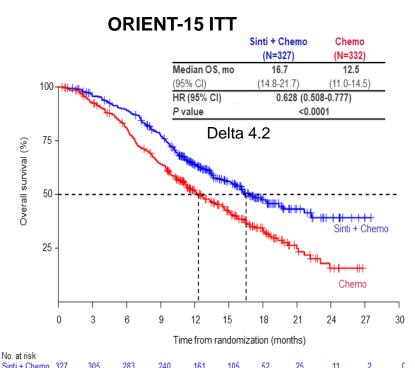
ORIENT-15 notable facts


- SCC patients from China-paclitaxel/cisplatin (PC)
- TPS ≥10 36%; CPS ≥10 (22C3 clone) 57% similar OS HR
- Dual primary endpoints OS in CPS ≥10 and ITT- both met
- No new safety signals 59% Grade 3-4 AEs w/ Sinti/PC

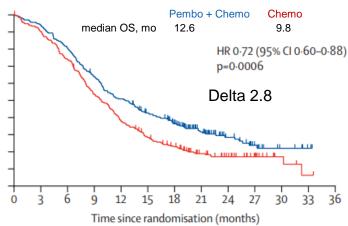
Cotomomi	Cubavana	No. events	s/patients		
Category	Subgroup	Sinti+ Chemo	Chemo	— HR (95% CI)	
	CPS <10	66/139	90/139	0.617 (0.448-0.849)	-
PD-L1	CPS ≥10	82/188	113/193	0.638 (0.480-0.848)	-
expression	TPS <10%	96/208	124/213	0.675 (0.516-0.882)	-
	TPS ≥10%	52/119	79/119	0.547 (0.384-0.778)	

ORIENT-15 Overall survival

PD-L1 CPS ≥10


All patients

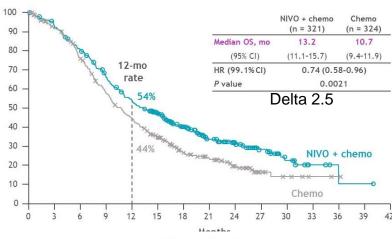
Superior OS benefit with Sinti + Chemo versus Chemo in PD-L1 CPS≥10 and all randomized patients.



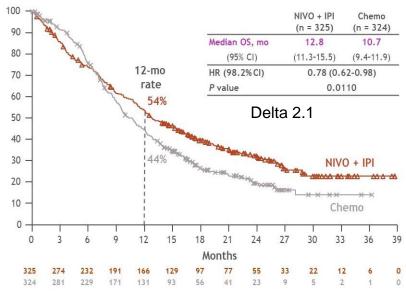
Overall survival ORIENT-15, KN 590 and CM 648

- Control arm 2 mos better
- Larger delta
- Irrespective of PDL1?

KN 590 ITT SCC patients



274	258	221	175	139	111	89	50	27	14	6	2	0
(0)	(0)	(0)	(1)	(1)	(7)	(13)	(43)	(62)	(71)	(78)	(82)	(82)
274	247	203	146	103	75	57	34	23	13	4	1	0
(0)	(1)	(1)	(2)	(2)	(5)	(9)	(23)	(31)	(42)	(50)	(51)	(51)


Subgroup	Overall S N, median OS* HR (95°	(95% CI), mo
	P+C	С
ESCC CPS <10	N = 121	N = 126
	10.5 (9.2-13.5)	11.1 (9.1-12.4)
	0.99 (0.7	4-1.32)

CM 648 ITT

All randomizeda

Immunotherapy in Esophageal SCC

	Keynote 590	Checkmate 648	Orient 15	ESCORT-1st
Design	FU/cis /PD-1 vs FU/Cis	PD-1/CTLA-4 vs FU/Cis; FU/Cis/PD-1 vs FU/Cis	Paclitaxel/cis /PD-1 vs paclitaxel/cis	paclitaxel/cis/PD-1 vs paclitaxel/cis
Major enrollment	53% Asian	70% Asian	China	China
PDL1 testing	CPS ≥10 51%	CPS ≥10 NA/ TPS ≥10 30%	CPS ≥10 58%/ TPS ≥10 36%	TPS <u>></u> 10 34%
OS HR ITT; CPS <u>></u> 10; CPS <10	0.73 0.62; 0.86	TPS ITT : 0.78; and 0.74	0.62; 0.61; 0.63	TPS 0.70*; 0.52*; 0.78*
ITT PFS	0.65	1.26; and 0.81	0.55	0.56
ITT ORR	45% vs 29%	28% vs 27% and 47% vs 27%	66% vs 45%	72% vs 62%
Grade 3-5 SAE	86% vs 83%	34% vs 37% and 49% vs 37%	60% vs 54%	63% vs 68%

Immunotherapy in EG adenocarcinoma

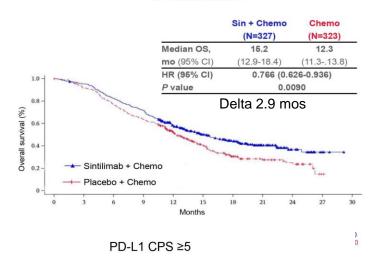
- Nivolumab with chemotherapy approved in the United States for 1st-line treament irrespective of PD-L1 status¹
- Pembrolizumab, trastuzumab, and chemotherapy approved in the United States for HER2-positive disease²
- Nivolumab approved in Asia irrespective of PD-L1 status for ≥ 3rd-line treament³
- Pembrolizumab approval for ≥ 3rd-line treatment in the United States to be withdrawn (announced in July 2021)⁴
- Pembrolizumab approved in TMB ≥ 10 mut/Mb (United States) or MSI-H tumors (United States and Japan)^{2,5}

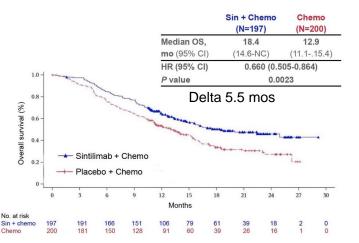
Sintilimab plus chemotherapy (chemo) versus chemo as the first-line treatment for advanced gastric or gastroesophageal junction (G/GEJ) adenocarcinoma (ORIENT-16)

Jianming Xu*, Haiping Jiang, Yueyin Pan, Kangsheng Gu, Sundong Cang, Lei Han, Yongqian Shu, Jiayi Li, Junhui Zhao, Hongming Pan, Suxia Luo, Yanru Qin, Qunyi Guo, Yuxian Bai, Yang Ling, Yingmei Guo, Ziran Li, Ying Liu, Yan Wang, Hui Zhou

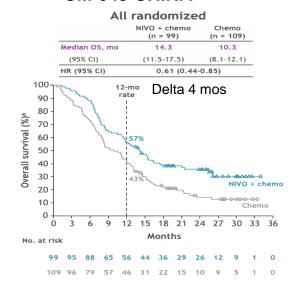
*, presenting author, MD, The Fifth Medical Center, Chinese PLA General Hospital

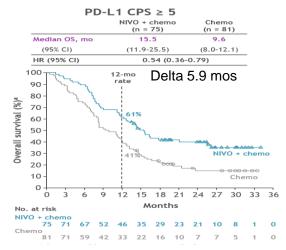
ORIENT-16 notable facts

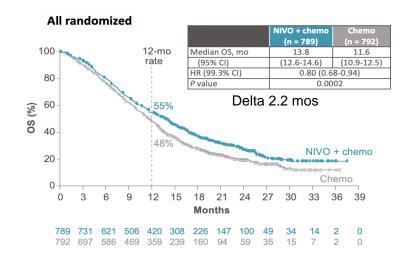

- Gastric/GEJ, no esophagus adeno (Gastric do better than GEJ/esophagus)
- Dual primary endpoints OS in CPS ≥5 and ITT both met
- XELOX/Sinti ITT mOS 15.2 mos HR .76; mPFS 7.1 HR .63; ORR 58%
- No new safety signals 59% Grade 3-4 AEs w/ XELOX/Sinti

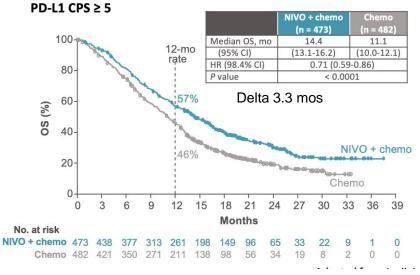

Category	Subgroup	Sin + Chemo (N)	Chemo (N)	HR (95% CI)	HR (95% CI)
PD-L1	CPS ≥10	146	142	0.56 (0.41-0.77)	
expression	CPS ≥5	197	200	0.64 (0.49-0.84)	
	CPS ≥1	275	271	0.73 (0.58-0.90)	-

Overall Survival ORIENT-16 and CM 649


ORIENT-16 ITT


All Randomized



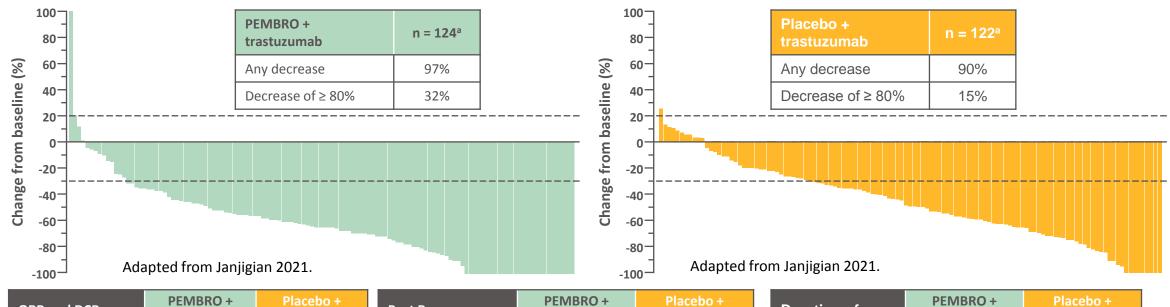

CM 649 CHINA

CM 649 ITT

Immunotherapy in EG adenocarcinoma

	Keynote 62	Checkmate 649	Orient 16
Design	Chemo/PD-1 vs chemo PD-1 vs chemo	Chemo/PD-1 vs chemo	Chemo/PD-1 vs chemo
Major enrollment	US/ Europe/ Australia 58%	US 17%, Asia 23%, rest 60%	China
CPS ≥ 5	NA (37% CPS ≥ 10)	60%	62%
OS HR ITT; CPS <u>></u> 5; CPS ,<5	NA; CPS ≥1 0.85*; NA; NA and 0.91; NA;NA	0.80; 0.71; 0.94	0.76; 0.66; NA
ITT PFS	0.84* and 1.66*	0.77	0.63
ITT ORR	49% vs 37% and 15% vs 37%	58% vs 46%	58%/vs 48%
Grade 3-5 AEs	73% vs 69% and 17% vs 69%	60% vs 44%	60% vs 52%

Conclusions: Sintilimab studies


- Well-executed large multicenter randomized phase III studies
- Solidifies the importance of anti-PD-1/chemo in first-line setting
- PDL1 CPS preferred over TPS in SCC and adenocarcinoma
- The role for Sinti in first-line setting globally is TBD
- Intriguing data w/ paclitaxel/cisplatin backbone in SCC

HER2 inhibition in EG adenocarcinoma

- Up to 20-30% HER2+ positive
- First-line trastuzumab/chemotherapy FDA approved mOS 13.8mos ORR 47%
- 30% of GEJ HER2+ tumors with co-alterations of the RTK/RAS/PI3K pathway intrinsic resistance
- HER2 inhibition alone in 1st line insufficient to overcome intrinsic resistanceseveral negative studies (LOGIC, JACOB, HELOISE)
- Pembrolizumab/Trastuzumab/chemotherapy FDA approved in 1st line
- Trastuzumab deruxtecan (T-DXd) is FDA approved after trastuzumab failure based on Destiny Gastric 01

KEYNOTE-811 phase 3 study

Pembrolizumab/trastuzumab/chemotherapy FDA approved May 2021 in HER2+ disease

ORR and DCR, % (95% CI)	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)	
ORR	74.4%	51.9%	
ORR Difference ^b	22.7% (11.2-33.7) P = 0.00006		

Best Response, n (%)	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)
CR	15 (11%)	4 (3%)
PR	84 (63%)	64 (49%)
SD	29 (22%)	49 (37%)
PD	5 (4%)	7 (5%)
Not evaluable	0	2 (2%)
Not assessed	0	5 (4%)

Duration of Response	PEMBRO + trastuzumab (n = 133)	Placebo + trastuzumab (n = 131)
Median ^c	10.6 mo	9.5 mo
Range	1.1+ to 16.5+	1.4+ to 15.4+
≥ 6-mo duration ^c	70.3%	61.4%
≥ 9-mo duration ^c	58.4%	51.1%

Grade 3-5 AE rates did not differ between treatment arms (57%)

^aParticipants with RECIST-measurable disease at baseline and ≥1 evaluable post-baseline measurement. ^bCalculated using the Miettinen and Nurminen method stratified by the randomization stratification factors. ^cKaplan-Meier estimation. The treatment regimen in both arms included trastuzumab and chemotherapy. Data cutoff date: June 17, 2020.

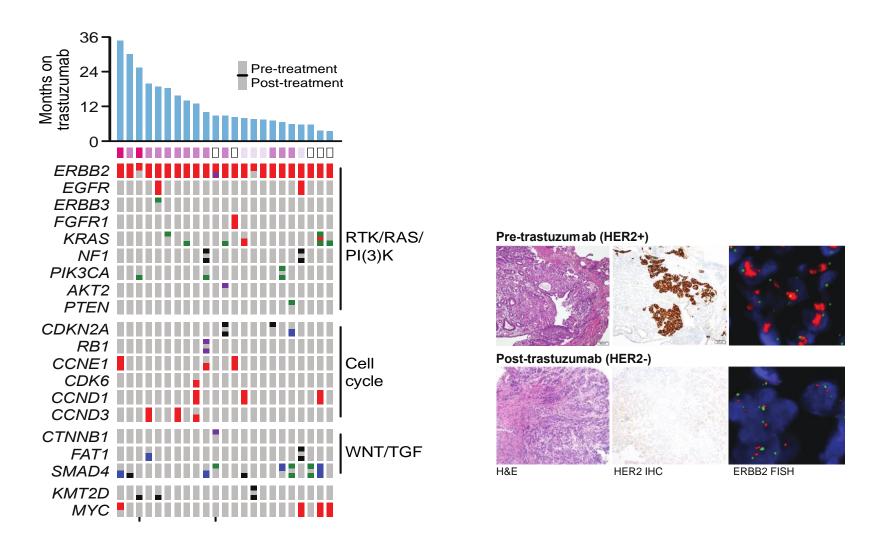
Janjigian YY et al. Presented at ASCO 2021. Abstract 4013.

Ipilimumab or FOLFOX in combination with Nivolumab and Trastuzumab in previously untreated HER2 positive Esophago Gastric Adenocarcinoma – the randomized AIO INTEGA trial.

Alexander Stein
Hematology-Oncology Practice Hamburg-Eppendorf
University Cancer Center Hamburg

AIO-Intega notable facts

- Relatively large phase II (n=82) with translation research
- Chemotherapy free arm nivo1/ipi3/trastuzumab
- Patients enrolled irrespective PDL1 status; PDL1 is not predictive
- Trast/Nivo/FOLFOX ORR 56% (74% in Phase III w/ pembro/traz/chemo))
- ctDNA decline after 1st cycle predictive of outcome mOS 8.5 vs. 31.2 months
- Grade > 3 TRAE higher with chemo by 20%, QOL favored the chemotherapy arm likely due to better efficacy


	PEMBRO + trastuzumab + capecitabine + oxaliplatin
ORR, n (%; 95% CI) ^a	32 (91; 78-97)
Best response, n (%) ^a CR PR SD PD	6 (17) 26 (74) 3 (8) 0
Disease control rate, %	100
Median PFS, months 6-month rate, %	13.0 75
Median OS, months 12-month rate, %	27.3 80

	All (n=88) ITT AlO-Intega			
	Trast/Nivo/ Ipi	Trast/Nivo/FOLFOX		
ORR	32%	56%		
mPFS	3.2 mo	10.7 mo		
PFSR@12	15%	37%		
mDOR	5.8 mo	9.2 mo		
mOS	16.4 mo	21.8 mo		
OSR@12	57%	70%		

^aAmong patients with evaluable disease (n = 35). Janjigian YY et al. *Lancet Oncol*. 2020;21:821-831.

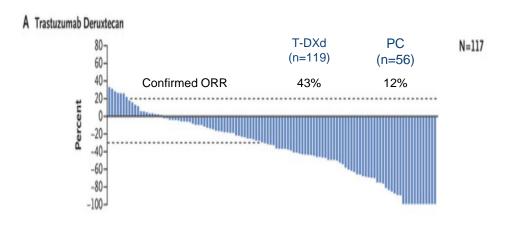
ACQUIRED TRASTUZUMAB RESISTANCE

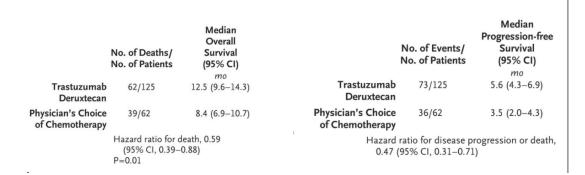
Loss of ERBB2 and KRAS and PIK3CA ALTERATIONS IN 20% OF CASES

Primary Analysis of a Phase 2, Open-Label, Single Arm Trial of Trastuzumab Deruxtecan in Western Patients With HER2-Positive Unresectable or Metastatic Gastric or Gastroesophageal Junction Cancer on or After a Trastuzumab-containing Regimen

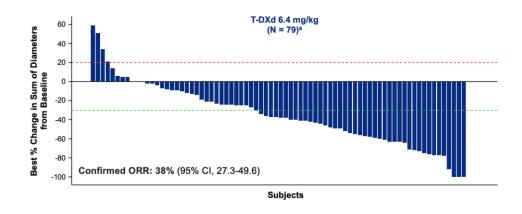
Eric Van Cutsem, MD^{a,} Maria di Bartolomeo, Elizabeth Smyth, Ian Chau, Haeseong Park, Salvatore Siena, Sara Lonardi, Zev A. Wainberg, Jaffer Ajani, Joseph Chao, Jabed Seraj, Yoshinori Kawaguchi, Amy Qin, Jasmeet Singh, Gerold Meinhardt, Geoffrey Ku

On behalf of the DESTINY-Gastric02 investigators


^aUniversity Hospital Gasthuisberg, Leuven and KU Leuven, Leuven, Belgium


Destiny West Gastric02 notable facts

- 66% GEJ primary (in East Gastric01 86% gastric)
- Re-biopsy for HER2 mandated and centrally reviewed on all (only 30% in Gastric 01)
- Primary endpoint confirmed ORR 38%; median PFS 5.5 months (27% ORR, PFS 4.2 Ramuciurmab/paclitaxel)
- No new safety signals; 7.6% ILD; no Grade 3-4 ILD events, one Grade 5
- 27% Grade ≥ 3 TRAE (also favorably compared in Ramucirumab/paclitaxel)


T-Dxd after trastuzumab progression

DESTINY-Gastric01 ≥3rd line in East

DESTINY-Gastric02 – 2nd line in West

PFS 5.5 DOR 8.1

Conclusions: HER2 in EG adenocarcinoma

- First-line trastuzumab/anti-PD1/chemotherapy important option
 - CTLA4 blockade w/ dual HER2/PD-1 inhibition not enough
- Second-line HER2 remains a viable therapeutic target
 - T-Dxd has similar ORR in 2nd Western patients (despite mandatory biopsies) and <u>></u>3rd line Eastern patients
 - Co-occurring activation in GEJ/E CIN tumors likely driving the resistance

Thank you for your attention

Twitter: @yjanjigianMD

