

Stage II, lacking evidence: What to do in daily practice?

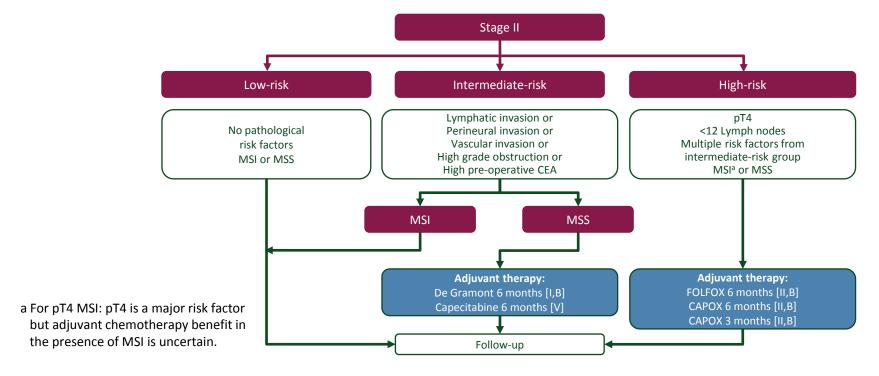
Takayuki Yoshino, MD., Ph.D.

Dept. of Gastroenterology and Gastrointestinal Oncology / National Cancer Center Hospital East, Japan

Conflict of Interest

Lecture Fee;

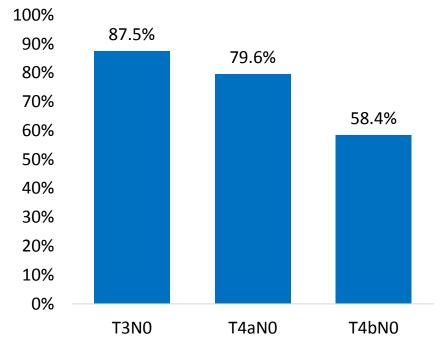
Bayer, Chugai, Eli Lilly, Merk Biopharma, Ono, and Taiho


Research grant;

Amgen, Chugai, Daiichi Sankyo, MSD, Ono, Parexel, Sanofi, Sumitomo Dainippon, and Taiho

What to do in daily practice?

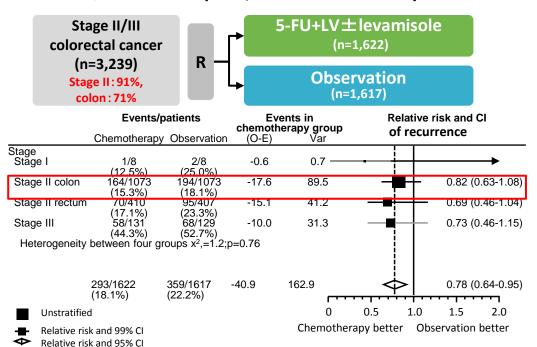
ESMO Clinical Practice GLs for localized CC 2020

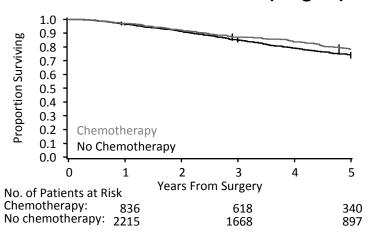

Argiles G, Yoshino T, et al. Ann Oncol 2020.

Prognosis of Stage II colon cancer; "Stage II colon cancer is a heterogeneous disease"

TNM Classification of Malignant Tumors, 8th edition

TNM8	NO	N1	N2a	N2b
Tis	0			
T1	I	IIIA	IIIA	IIIB
T2	-	IIIA	IIIB	IIIB
Т3	IIA	IIIB	IIIB	IIIC
T4a	IIB	IIIB	IIIC	IIIC
T4b	IIC	IIIC	IIIC	IIIC


SEER 5-Year Relative Survival Rate (%)

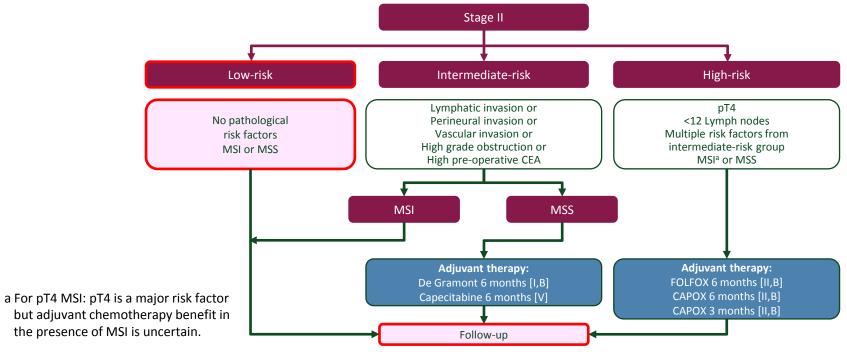


Is adjuvant chemotherapy needed for "ALL" Stage II colon cancer?

QUASAR trial (64%, < 12 LN examined)

SEER database review (Stage II)

	5yOS	HR(95% CI)
No Chemotherapy (n=2291)	75%	unadjusted :0.80 (0.68 to 0.95)
Chemotherapy (n=860)	78%	Adjusted: 0.91 (0.77 to 1.09).

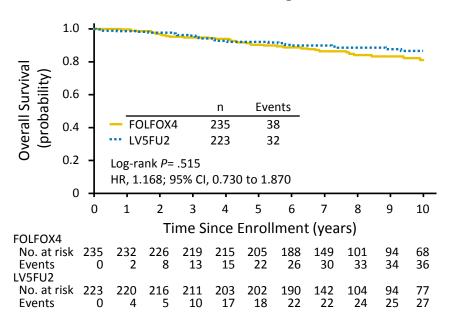

FP adjuvant chemotherapy is not required for all Stage II colon cancer

QUASAR Collaborative Group, Lancet 2007. Hutchins G, et al. J Clin Oncol. 2011. Schrag D, et al. J Clin Oncol 2002.

What to do in daily practice?

ESMO Clinical Practice GLs for localized CC 2020

Follow-up for Stage II without risk factors


Argiles G, Yoshino T, et al. Ann Oncol 2020.

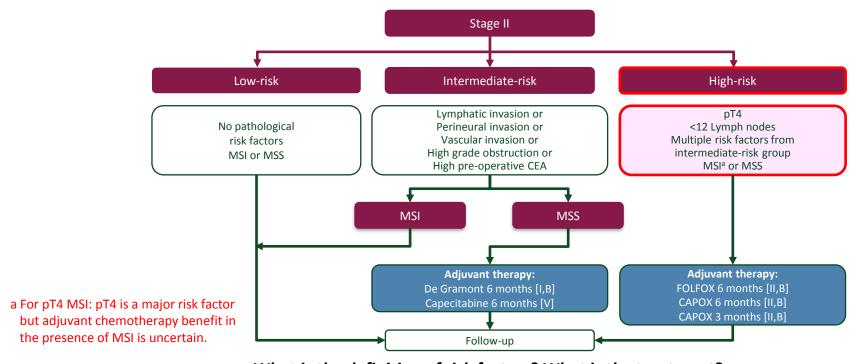
Good prognosis for Low-risk stage II colon cancer

MOSAIC Study

DFS and OS Estimates according to Disease Stage for Patients in the LV5FU2 and FOLFOX4 Treatment Arms

Low-risk stage II	LV5FU2	FOLFOX4
No. of patients	223	235
DFS		
No. of events	46	49
3 year, % (SE)	87.9 (2.2)	88.0 (2.1)
5 year, % (SE)	86.1 (2.3)	84.9 (2.4)
10 year, % (SE)	79.7 (3.0)	77.4 (3.2)
OS		
No. of events	32	38
3 year, % (SE)	95.9 (1.3)	94.9 (1.5)
5 year, % (SE)	92.3 (1.8)	90.5 (1.9)
10 year, % (SE)	86.7 (2.5)	81.2 (3.0)

ngress FP <u>+</u> OX adjuvant chemotherapy is not required for low-risk Stage II colon cancer,


Andre T, et al. J Clin Oncol 2015.

Takayuki Yoshino, MD., Ph.D.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

What to do in daily practice?

ESMO Clinical Practice GLs for localized CC 2020

What is the definition of risk factors? What is the treatment?

Argiles G, Yoshino T, et al. Ann Oncol 2020.

What is major prognostic parameters for stage II risk assessment

Risk analysis of Stage II colon cancer patients in the California Cancer Registry database

Impact of High-Risk Features on DFS in Patients with High-Risk Stage II Colon Cancer in ACHIEVE-2
Trial as part of the IDEA Collaboration

OS-adjusted hazard ratio for each recurrence risk factor

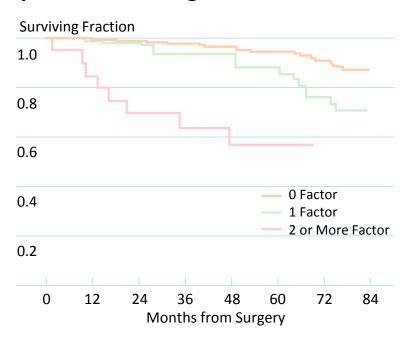
High-risk feature	HR	95% CI
T4	2.56	2.03-3.21
< 12 LN examined	1.65	1.34-2.02
Positive margin	1.31	0.90-1.91
perineural invasion	1.04	0.66-1.63
lymphovascular invasion	0.83	0.57-1.21
High grade	0.84	0.65-1.08

B.D. Babcock et al. Ann Surg Oncol 2018.

Multivariate Analysis of High-Risk Features for DFS

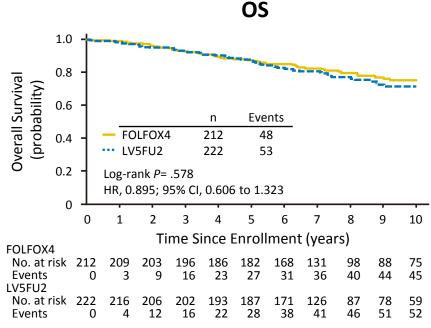
High-risk features	HR	95% CI	P
Т4	3.77	2.18 - 6.53	< 0.0001
< 12 LN examined	2.98	1.59 – 5.59	0.0006
Obstruction	0.75	0.38 - 1.51	0.4263
Perforation	1.93	0.94 – 3.98	0.0754
Poorly Differentiated	0.92	0.41 – 2.06	0.8446
Vascular Invasion	0.68	0.36 – 1.28	0.2307

Manaka D. Yoshino T. et al.: ASCO 2020 #4011.


The magnitude of the risk to the OS/DFS depends on the factors.

Effect of multiple risk factors

Prospective analysis conducted on 448 patients with stage II CC


Factor Category		Univariate analysis 5y DSS (95% CI) p		Multivariate analysis HR(95% CI) <i>p</i>	
T stage	Т3	92% (89–95)	0.04	2.7 (1.1–6.2)	0.02
	T4	69% (51–88)			
Preoperative CEA	≤5	93% (89–97)	0.04	2.1 (1.1–4.1)	0.02
(ng/ml)	>5	87 % (78–95)			
Lymphovascular	Absent	92% (89–95)	0.02	2.1 (1–4.4)	0.04
or perineural invasion	Present	80% (68–92)			

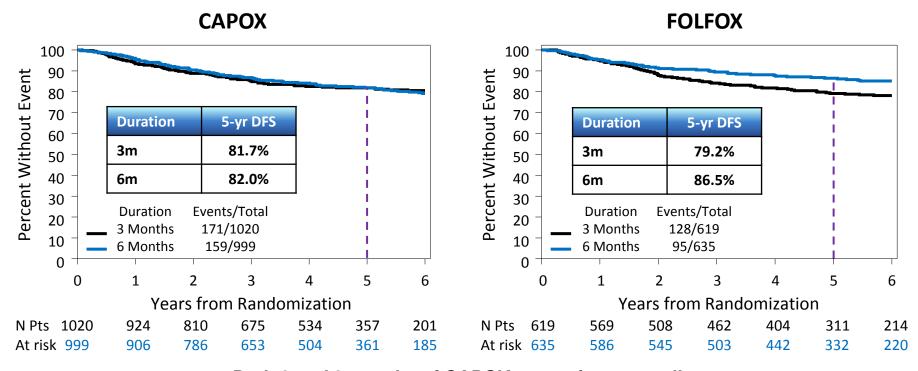
The presence of multiple adverse prognostic factors identifies a high-risk subgroup

Quah HM, et al. Dis Colon Rectum. 2008.

Subgroup analysis from MOSAIC trial (High-risk Stage II)

Variable	LV5FU2	FOLFOX4	Absolute Change*	Relative Change†	HR	95% CI	P
High-risk stage II							
No. of patients	222	212	_	-	-	-	-
DFS							
No. of events	68	56	_	_	0.79	0.55 to 1.13	.194
3 year, % (SE)	81.3 (2.6)	86.3 (2.4)	+5	+6.2	-	-	-
5 year, % (SE)	73.8 (3.0)	81.5 (2.7)	+7.7	+10.4	-	-	-
10 year, % (SE)	67.0 (3.5)	72.7 (3.3)	+5.7	+8.5	-	-	-
os							
No. of events	53	48	_	_	0.89	0.60 to 1.32	.579
3 year, % (SE)	93.1 (1.7)	92.9 (1.8)	-0.2	-0.21	_	-	-
5 year, % (SE)	87.5 (2.2)	87.6 (2.3)	+0.1	+0.1	_	_	-
10 year, % (SE)	71.7 (3.5)	75.4 (3.3)	+3.7	+5.2	_	_	_

*Absolute difference reflects a comparison of survival between the FOLFOX and LV5FU2 arms. †Relative difference reflects a ratio of the observed survival in the FOLFOX arm and the LV5FU2 arm [(X year OS rate in the FOLFOX group - X year OS rate in the LV5FU2 group)/(X year OS rate in the LV5FU2 group) \times 100].


6 months of FOLFOX is an option for high-risk stage II

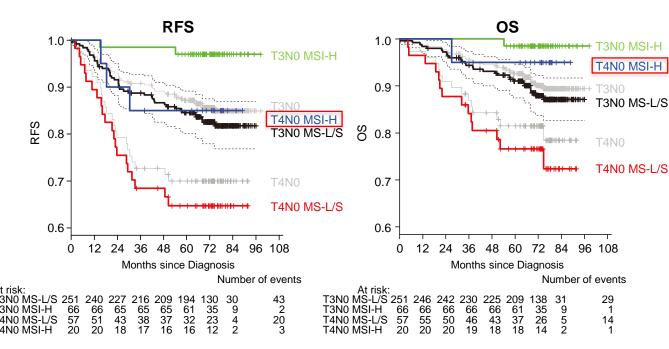
Andre T, et al. J Clin Oncol 2015.

High-risk:

T4, tumor perforation, or fewer than 10 lymph nodes examined

Subgroup analysis from IDEA High-risk stage II colorectal cancer (colon: 96.0%, rectal: 4.0%)

Both 6 and 3 months of CAPOX are options as well


Iveson TJ, Yoshino T, et al. J Clin Oncol 2021.

What is the prognosis for pT4 MSI-H?

Tumors from patients in the PETACC3 adjuvant chemotherapy trial were examined for MSI

	Stage II	(n=420)
Sex	Female	175
	Male	245
Grade	G-1/2	394
	G-3/4	24
	NA	2
T stage	T12	0
	T3	341
	T4	79
Site	Left	237
	Right	183
Trootmont group	5-FU/LV	213
Treatment group	FOLFIRI	207
MSI status	MS-L/S	309
	MSI-H	86
	NA	25

MSI-H = microsatellite instability high MS-L/S = microsatellite instability low and microsatellite stable

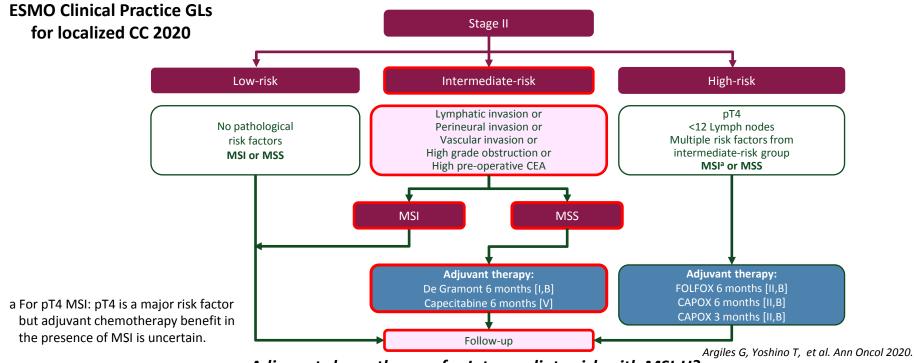
The presence of MSI/MMR in localised disease confers better prognosis

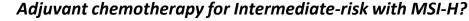
Roth AD, et al. J Natl Cancer Inst 2012.

What is the treatment for Stage II MSI-H?

FP mono for Stage II dMMR is ineffective, OX for Stage II/III dMMR and Stage III dMMR population is useful.

The effectiveness of OX for Stage II dMMR is unclear. Here is "a lacking evidence"


Time since enrollment in years



Time (years)

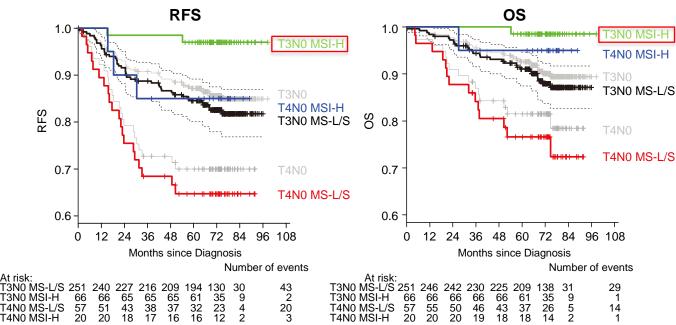
Time From Randomization (years)

What to do in daily practice?

Adjuvant chemotherapy should be considered for intermediate risk and MSS?

Takayuki Yoshino, MD., Ph.D.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.



What is the prognosis for pT3 MSI-H?

Tumors from patients in the PETACC3 adjuvant chemotherapy trial were examined for MSI

	Stage II (n=420)
Sex	Female	175
	Male	245
Grade	G-1/2	394
	G-3/4	24
	NA	2
T stage	T12	0
	T3	341
	T4	79
Site	Left	237
	Right	183
Two at many and areas	5-FU/LV	213
Treatment group	FOLFIRI	207
MSI status	MS-L/S	309
	MSI-H	86
	NA	25

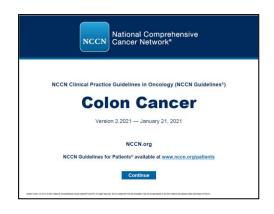
MSI-H = microsatellite instability high MS-L/S = microsatellite instability low and microsatellite stable

No need for adjuvant chemotherapy for T3NO and MSI-H colon cancer

Lymphovascular or perineural invasion are associated with High risk of recurrence

Prospective analysis conducted on 448 patients with stage II CC

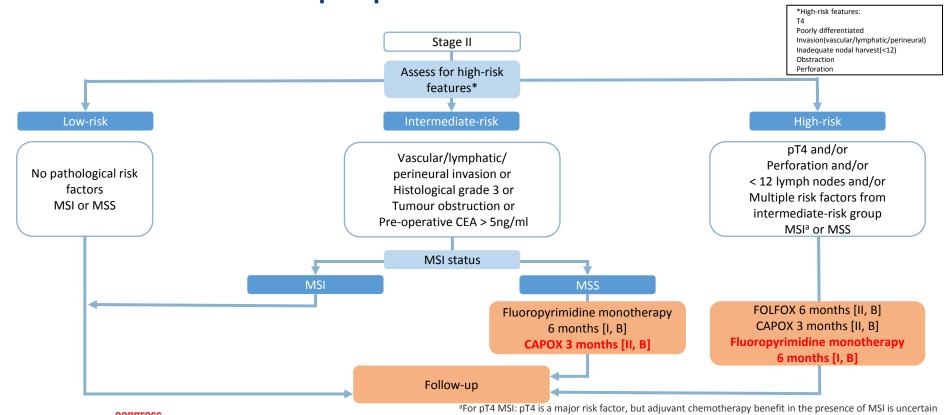
Factor	Category	Univariate analysis 5-yr DSS (95% CI)	Log-rank P value	Multivariate analysis Hazard ratio(95% CI)	P value
T stage	T3	92% (89–95)	0.04	2.7 (1.1–6.2)	0.02
	T4	69% (51–88)			
Preoperative CEA	≤5	93% (89–97)	0.04	2.1 (1.1–4.1)	0.02
(ng/ml)	>5	87% (78–95)			
Lymphovascular	Absent	92% (89–95)	0.02	2.1 (1–4.4)	0.04
or perineural invasion	Present	80% (68–92)			


Quah HM, et al. Dis Colon Rectum. 2008.

These factors can be used to identify intermediate risk Stage II patients who should be considered for adjuvant therapy.

NCCN Guidelines Colon Cancer Version 2.2021

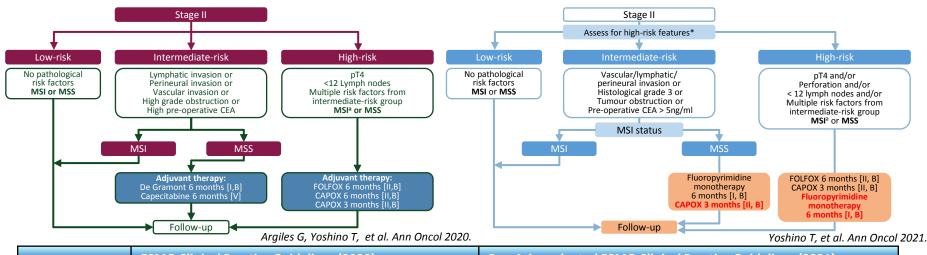
PATHOLOGIC STAGE^m ADJUVANT TREATMENT^{b,u} Observation Observation Observation Office capecitabine (6 mo)^q or 5-FU/leucovorin (6 mo)^q T3, N0, M0 at high risk for systemic recurrence^{o,p} or T4, N0, M0 (MSS/pMMR) ADJUVANT TREATMENT^{b,u} Observation Observation Occurrence Occurre



PRINCIPLES OF RISK ASSESSMENT FOR STAGE II DISEASE

- Patient/physician discussion regarding the potential risks of therapy compared to potential benefits, including prognosis. This should include discussion of
 evidence supporting treatment, assumptions of benefit from indirect evidence, morbidity associated with treatment, high-risk characteristics, and patient
 preferences.
- When determining if adjuvant therapy should be administered, the following should be taken into consideration:
 - ✓ Number of lymph nodes analyzed after surgery (<12)</p>
 - ✓ Poor prognostic features (eg, poorly differentiated histology [exclusive of those that are MSI-H]; lymphatic/vascular invasion; bowel obstruction; PNI; localized perforation; close, indeterminate, or positive margins)
 - ✓ Assessment of other comorbidities and anticipated life expectancy.
- The benefit of adjuvant chemotherapy does not improve survival by more than 5%.
- MSI or MMR testing

Pan-Asian adapted ESMO Clinical Practice Guidelines for the diagnosis treatment and follow-up of patients with localised colon cancer

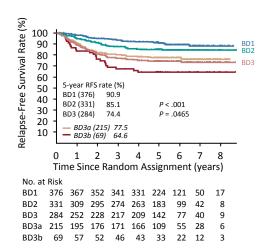


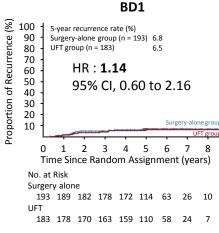
Takayuki Yoshino, MD., Ph.D.

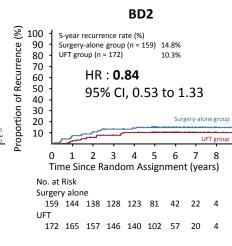
Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

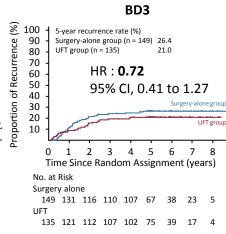
Yoshino T. et al. Ann Oncol 2021.

Differences between ESMO GLs and Pan-Asian GLs




	ESMO Clinical Practice Guidelines (2020)	Pan-Asian adapted ESMO Clinical Practice Guidelines (2021)
intermediate-risk	For patients with intermediate risk (non-MMR/MSI + any risk factor except pT4 or <12 lymph nodes assessed), 6 months of fluoropyrimidines should be recommended [I, B].	For patients with intermediate-risk stage II (non-MMR/MSI + any risk factor except pT4/perforation or < 12 lymph nodes assessed) 6 months of fluoropyrimidine therapy is recommended [II, B]. Three months of CAPOX is an acceptable alternative in fit patients, after being informed of the risk/benefit profile [V; consensus = 100%]
high-risk	Patients with high-risk stage II (pT4 or <12 lymph nodes or multiple intermediate risk factors, regardless of MSI) may be considered for the addition of oxaliplatin [I, C].	For patients with high-risk stage II disease (pT4/perforation or < 12 lymph nodes assessed or multiple intermediate risk factors, regardless of MSI status) the addition of oxaliplatin should be considered, in view of a higher risk of relapse and anticipated benefit [II, C; consensus = 100%]


The Prognostic and Predictive Impact of Tumor Budding in Stage II Colon Cancer: Results From the SACURA Trial


RFS rate in patients with colon cancer according to grade of tumor budding

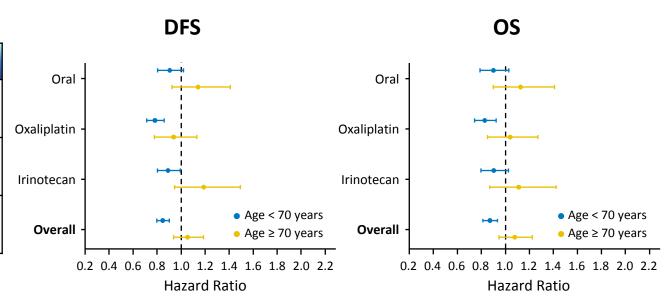
Impact of Adjuvant Chemotherapy on Recurrence Rate According to Tumor Budding Grade

BD1: less than five budding foci, BD2: five to nine budding foci BD3: 10 or more budding foci

(BD3a: 10 to 19 budding foci, BD3b: 20 or more budding foci)

Tumour budding is one of the risk factors, FP mono was seen to improve relapse-free survival in stage II patients with high tumour budding.

Ueno H, et al. J Clin Oncol 2019.



Age should be considered when decision making

Impact of Age on the Efficacy of Newer Adjuvant Therapies in Patients With Stage II/III Colon Cancer: Findings From the ACCENT Database

Overall Baseline Patient Characteristics

Characteristic	Age < 70 Years (%; n = 11,953)	Age ≥ 70 Years (%; n = 2,575)
Sex Female Male	45 55	45 55
Stage II III	23 77	19 81
Treatment arm Control Experimental	49 51	52 48

Treatment decisions need to be carefully considered

McCleary NJ, et al. J Clin Oncol 2013.

Testing for DPD insufficiency should be conducted before initiating FP based chemotherapy in Europe Prospective, multicentre, safety analysis Prevalence of impaired DPD genotype and its

in 17 hospitals in the Netherlands (n=1103)

	<i>DPYD</i> variant allele carriers	Wild-type patients	p value
No of patients(%)	85 (8%)	1018 (92%)	
FP-related severe toxicity(%)	33 (39%)	231 (23%)	0.0013

Prospective genotyping for DPYD*2A, c.2846A>T, c.1679T>G, c.1236G>A. Heterozygous DPYD variant allele carriers received an initial FP dose reduction of 25% (c.2846A>T and c.1236G>A) or 50% (DPYD*2A and c.1679T>G),

Prevalence of impaired DPD genotype and its association with FP-related toxicities in East Asian (n=1365)

							,		
	HGVS*	MAF	Diarrhea (%)		Stomatit	Stomatitis (%)		Neutropenia (%)	
	HGV3		Gr1-4	Gr 0	Gr1-4	Gr 0	Gr1-4	Gr (
	c.C2303A	0.0022	4.0	4.7	4.5	4.5	4.4	4.5	
	c.G2194A	0.019	4.0	3.9	4.1	3.8	3.8	4.1	
	c.T1896C	0.13	22.0	24.2	20.9	24.4	20.4	24.3	
	c.A1627G	0.28	43.9	41.9	44.9	41.8	43.2	40.9	
1	c.G1294A	0.00036	0.0	0.1	0.0	0.1	0.0	0.0	
1	c.G1003T	0.00073	0.3	0.1	0.3	0.1	0.3	0.0	
	c.A496G	0.02	5.7	3.3	3.4	4.0	4.4	3.9	
	c.A451G	0.0029	0.0	0.8	0.0	0.8	0.9	0.2	
*	Nana of the	1 maior [DD variante	\DD\\D*1	24.62046	AST 616	70T>C 6.1	226C \ A	

^{*}None of the 4 major DPD variants (DPYD*2A, c.2846A>T, c.1679T>G, c.1236G>A)

Depending on the anticipated genetic profile of a specific Asian patient

None of DPD variants showed a clinically significant association with FP related toxicities

Pan-Asian adapted ESMO Clinical Practice Guidelines (2021)

Differences between ESMO GLs and Pan-Asian GLs

	ESMO Clinical Practice Guidelines (2020)
DPD phenotype	Based on the recommendation of the Pharmacovigilance Risk Assessment Committee (PRAC) of the European Medicines Agency (EMA) dated 13 March 2020, testing for DPD insufficiency should be conducted before initiating fluoropyrimidine based chemotherapy [III, A].

population, DPD genotyping or phenotyping may be considered before initiating fluoropyrimidine-based adjuvant therapy [III, A].

DPD genotyping or phenotyping should be implemented in patients who experience severe fluoropyrimidine toxicity [V; consensus = 100%]

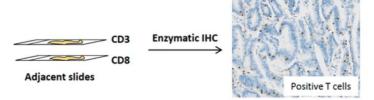
Takayuki Yoshino, MD., Ph.D.

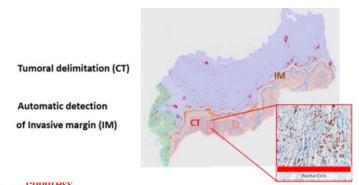
Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Use of personalized medicine in localized colon cancer/biomarkers for risk assessment

Biomarker/tool	Clinical significance	Potential use and relevance
dMMR	Prognostic & predictive	Associated with favorable prognosis in stage II and possibly low-risk (IDEA defined) stage III patients. Predicts lack of benefit and possibly harm with 5-FU based adjuvant chemotherapy in both stage II and III patients.
KRAS and BRAF ^{V600E} mutation	Prognostic	KRAS and BRAFV600E mutations have been reported to be associated with a worse prognosis in several large retrospective studies, in both stage II and III patients. dMMR status attenuates adverse prognostic impact of BRAFV600E mutation, possibly except in IDEA defined high-risk stage III CC.
PIK3CA mutations	Predictive	Retrospective analysis suggests an association between the use of aspirin and improved survival among the patients with mutated-PIK3CA colorectal cancer including stage I-III patients.
CDX2 expression	Prognostic & predictive	Retrospective analysis suggested lack of CDX2 expression was associated with worse outcome in stage II and III CC. Lack of CDX2 expression appears to be predictive of benefit from adjuvant chemotherapy in stage II patients.
Genomic profiling (Oncotype Dx Colon Cancer®)	Prognostic	Prognostic discrimination capacity is insufficient to guide therapy in routine clinical practice.
CMS	Prognostic	CMS1 tumors have a good prognosis, the CMS4 tumors have a poor prognosis, and the CMS2 and CMS3 types have an intermediate prognosis. Not validated to guide therapy in routine clinical practice.
Immunoscore (IS)	Prognostic	High immunoscore is associated with favorable prognosis in both stage II and III patients independent of patient T stage, N stage and microsatellite instability. High-risk stage II patients with high Immunoscore had similar time to recurrence compared with average risk stage II patients in a recent report.
ctDNA	Prognostic	ctDNA detection in the bloodstream after surgical resection and adjuvant chemotherapy provides direct evidence of residual micro-metastatic disease and correlates with a very high risk of cancer recurrence in resected stage II and III patients. Sensitivity, specificity, positive and negative predictive values are 48%, 100%, 100% and 91%, respectively. Reported studies suggest that ctDNA can potentially serve as a real time marker of adjuvant therapy efficacy in stage II and III patients.

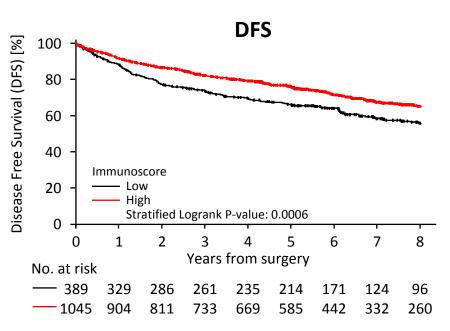
Immunoscore® Colon kit

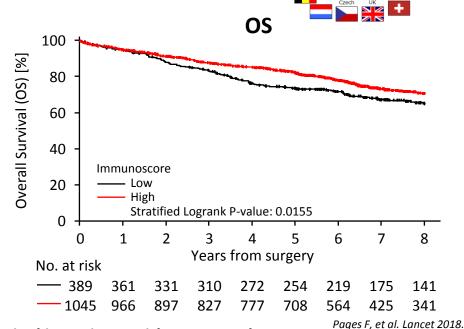

Material: FFPE block or FFPE slides from tumor resection


Target: CD3+ & CD8+ T cells

Location: Center (CT) and invasive margin (IM) of the tumor

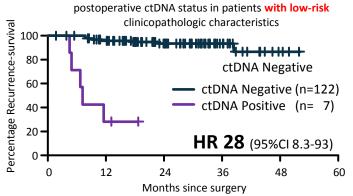
Technology: Image Analysis

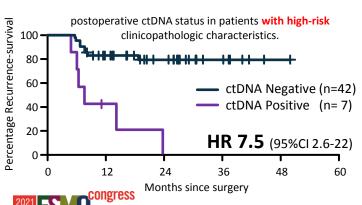

Percentiles	Immunoscore Classes	Patients IS groups	
>95-100%	14	Цiah	
>70-95%	13	High	
>25-70%	12	Intermediate	
>10-25%	I1	Low	
0-10%	10	Low	


Takayuki Yoshino, MD., Ph.D.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

KM curves in patients with stage II colon cancers (n=1,434)

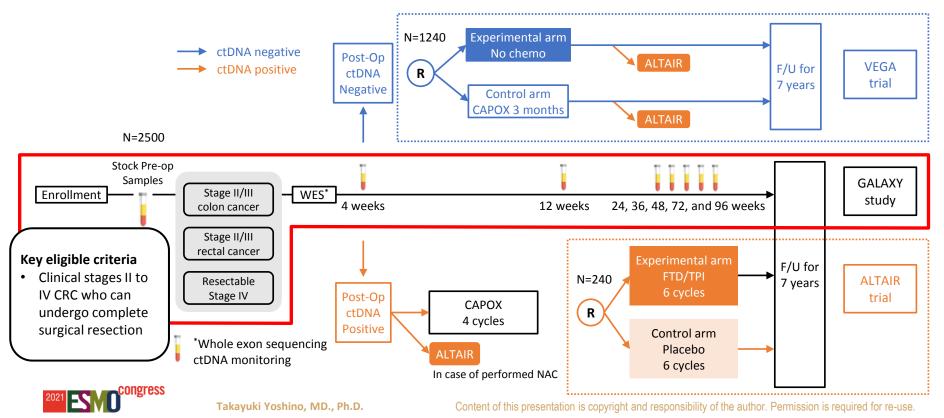

The Immunoscore based on 2 categories for DFS, OS



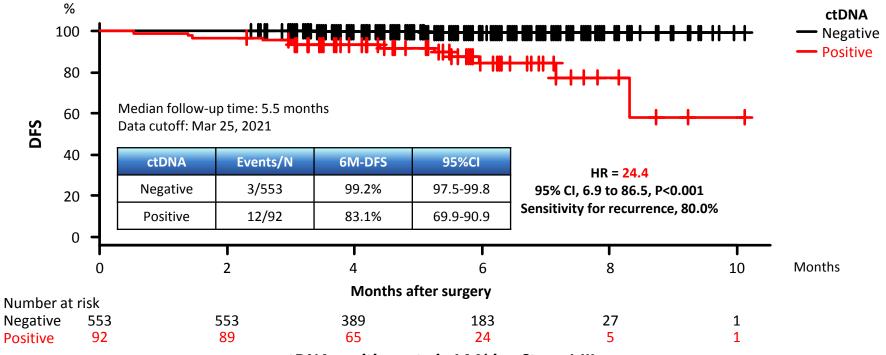
The Immunoscore significantly predicted survival in patients with stage II colon cancer

DFS, pStageII (Patients not treated with chemotherapy, n=178)

Takavuki Yoshino. MD., Ph.D.


Univariate analysis HR	95% CI	Р	Multivariate analysis HR	95% CI	Р
1	0.50-2.0	1			
1.1	0.57-2.2	0.7			
1.1	0.55-2.1	0.8			
0.32	0.08-1.3	0.1			
2.4	1.2-5.1	0.02	2.6	1.2-5.5	0.01
2.2	0.97-4.8	0.06			
1.9	0.92-4.1	0.08			
3.5	0.83-14.5	0.09			
2.1	1.06-4.2	0.03			
0.79	0.34-1.8	0.6			
2.8	0.98-7.9	0.06			
13	6.6–27	<0.001	14	6.8–28	<0.001
	Univariate analysis HR 1 1.1 1.1 0.32 2.4 2.2 1.9 3.5 2.1 0.79 2.8	analysis HR 95% CI 1 0.50-2.0 1.1 0.57-2.2 1.1 0.55-2.1 0.32 0.08-1.3 2.4 1.2-5.1 2.2 0.97-4.8 1.9 0.92-4.1 3.5 0.83-14.5 2.1 1.06-4.2 0.79 0.34-1.8 2.8 0.98-7.9	Univariate analysis HR 95% CI P 1 0.50-2.0 1 1.1 0.57-2.2 0.7 1.1 0.55-2.1 0.8 0.32 0.08-1.3 0.1 2.4 1.2-5.1 0.02 2.2 0.97-4.8 0.06 1.9 0.92-4.1 0.08 3.5 0.83-14.5 0.09 2.1 1.06-4.2 0.03 0.79 0.34-1.8 0.6 2.8 0.98-7.9 0.06	Univariate analysis HR 95% CI P Multivariate analysis HR 1 0.50-2.0 1 1.1 0.57-2.2 0.7 1.1 0.55-2.1 0.8 0.32 0.08-1.3 0.1 2.4 1.2-5.1 0.02 2.6 2.2 0.97-4.8 0.06 1.9 0.92-4.1 0.08 3.5 0.83-14.5 0.09 2.1 1.06-4.2 0.03 0.79 0.34-1.8 0.6 2.8 0.98-7.9 0.06	Univariate analysis HR 95% CI P Multivariate analysis HR 95% CI 1 0.50-2.0 1

Tie J, et al. Sci Transl Med 2016.


ctDNA is the greatest prognostic factor in Stage II colon cancer

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

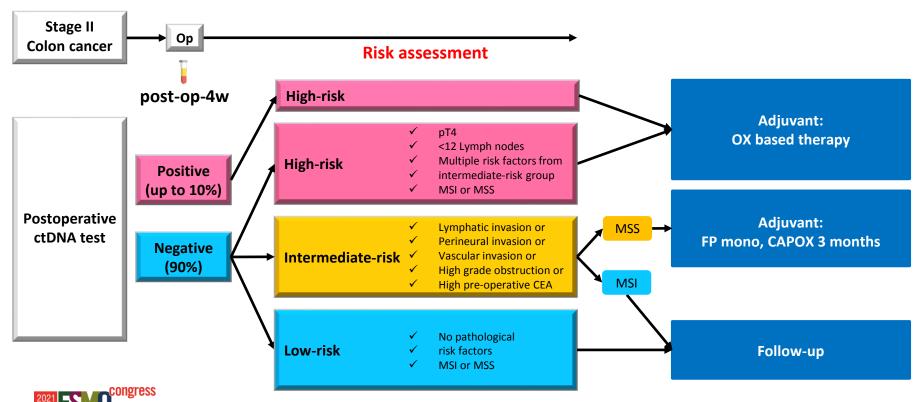
Schema of CIRCULATE-Japan project

DFS by post-op-4w ctDNA status in pStage I-III

ctDNA positive rate is 14 % in pStage I-III

Shirasu H, Yoshino T, et al.: WCGC2021 #O-11.

Multivariate analysis for recurrence in pStage I-III


Covariates	HR	95% CI	Р
Post-op-4w ctDNA positive vs. negative	17.1	4.6-63.1	<0.001
N1-2 vs. N0	7.1	0.9-57.7	0.06
RAS mt vs. wt	1.1	0.3-3.3	0.91
BRAF mt vs. wt	3.5	0.7-17.6	0.13
Gender Female vs. Male	1.5	0.5-4.2	0.46
PS 1 vs 0	1.4	0.3-6.5	0.65

No recurrence cases in T1-T2, and MSI-High patients so far. Hence T stage and MSI not included in the analysis.

Multivariate analysis was performed by Cox proportional hazard model.

What to do in the future?

Conclusion

- ✓ Adjuvant is not required for low-risk Stage II and Intermediate-risk Stage II with MSI-H.
- ✓ FP mono or FP+OX is required for Intermediate-risk Stage II with MSS.
- ✓ FP <u>+</u> OX is recommended for high-risk Stage II with MSS, while a lacking evidence for high-risk Stage II with MSI-H exists.
- Benefit of adjuvant therapy have not been observed in the elderly, treatment decisions should be carefully considered.
- ✓ DPD testing should be conducted before initiating FP based chemotherapy, while DPD testing is not needed because it is rare in Asia.
- ✓ Optimization of ctDNA-guided treatment selection W or W/O the immunoscore is desired.

